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Abstract. The dynamic behaviour of cracked rotors is one of the most discussed topics in the 
rotordynamic literature due to the wide range of problems that may arise from this fault. Among 
them, it is a common notion that cracks in horizontal rotating shafts may cause instability of the 
system because of the periodic opening and closing of the crack, i.e., the breathing mechanism, 
determines the stiffness variation and the parametric excitation of the rotor system. Simplified 
models have been used to study this phenomenon using Jeffcott rotors. For the first time in this 
paper, a model of a real hyperstatic rotor with several degrees of freedom is used, which also 
considers the bearings and the foundation of the system, and the stability is discussed by means of 
the Floquet theory. The sensitivity of the obtained results to the system anisotropy and the crack 
position is also investigated. The results presented are quite different from those obtained by means 
of the simple Jeffcott rotor but are consistent with real and documented field experiences. 
Keywords: crack, rotordynamics, stability, Floquet theory, multi-dimensional Floquet analysis 
 
 
1. Introduction 

The shafts in rotating machinery used in industrial plants are subjected to heavy working 
conditions that also include thermal transients. In spite of proper design and accurate manufacturing, 
the rotor shafts may be affected by fatigue cracks [1]. These cracks generally originate from 
manufacturing flaws, but their growth is associated with cyclic loading. Because these cracks may 
lead to catastrophic failures [2], their early detection is desirable.  

During rotation, a horizontal cracked shaft is characterised by a time-variant stiffness that 
depends on the position of the transverse crack with respect to gravity; that is, during one revolution, 
the crack opens and closes under the effect of the shaft weight [1]. This behaviour is known as the 
breathing mechanism, and the breathing associated with the stress distribution around the crack is 
responsible for the local variation in the shaft flexibility.  

Since the 1950s, many different studies have appeared in the literature on the topic of cracked 
shafts, and a portion of them are related to the stability of the dynamic behaviour of cracked rotors. 

One of the first papers on this subject was written by Gasch [3], who considered the dynamics 
of a cracked Jeffcott (or de Laval) rotor with two degrees of freedom (d.o.f.) and a hinge model for 
the breathing mechanism. The same author has further expanded this study over the last thirty years 
[4][5][6]. The dynamic behaviour of the Jeffcott cracked rotor has been investigated with respect to 
different rotational speeds, positions and depths of crack as well as with different types of rotor 
bearings. Gasch also proposed the use of Floquet theory to analyse the stability of the dynamic 
response and performed the so-called Floquet analysis (FA), which is based on the determination of 
the transition matrix eigenvalues. Gasch’s results show unstable zones caused by cracks located at 
approximately 2 N ω⋅ , where ω  is the natural frequency of the system, and N  is an integer 
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number. The predictions regarding the dynamic behaviour of Jeffcott cracked rotor have been 
experimentally verified by Muszyńska [7] using a test-rig that was able to accurately reproduce the 
behaviour of a Jeffcott rotor. 

Other authors in the literature have studied the effect of the breathing mechanism on the system 
stability; for instance, Huang et al. [8] determined the variation of the flexibility coefficients with 
respect to the shaft orientation (or the relative position of the crack during the revolution of the 
shaft). Sekhar studied the influence of one or two cracks on the rotor stability [9][10] by 
considering the real part of the eigenvalues of the linearised equation of motion. Yang et al. [11] 
focused their interest on the relationship between the chaotic response and the instability of the 
cracked rotors. Zhu et al. [12] considered the problem of avoiding instability in a cracked rotor 
supported by active magnetic bearings. Lin et al. [13] studied the effect of environmental variables 
on the cracked rotor stability. More recently, Chen et al. [14] and Sinou [15] offered further 
contributions to the discussion of cracked rotor stability. 

Although the phenomenon of the opening and closing of the crack has been thoroughly 
discussed in the literature, up to the present, the stability of cracked rotors has been studied for 
simple models only. However, the behaviour of real rotors can be quite different from that of the 
Jeffcott rotor.  

In this paper, a steam unit generator, which has developed a deep crack during its operating 
history [1][16][17] without showing any symptoms of instability during speed transients, is 
considered. For the first time, the authors show that this observed behaviour is completely contrary 
to the results predicted by the simple theoretical models based on Jeffcott rotors. 

The aim of this study is to evaluate the stability of a rotor for different values of the rotational 
speed and the depth of crack by also considering the effects of anisotropy. Large calculation 
resources are necessary for this type of investigation, and this necessity may partially explain why 
this type of analysis has not been previously performed on a multi-degrees-of-freedom system.  

The paper is organised as follows: in the two next sections, the generator model and the crack 
modelling are introduced. The main issues of Floquet theory related to the system stability are 
discussed in Section 4. In Section 5, selected algorithms for the transition matrix evaluation are 
proposed, and suitable modifications are introduced for managing the complexity of the considered 
system. The last section of the paper is devoted to a discussion of the stability results obtained by 
means of numerical calculations.  
 
2. Rotor model 

The majority of the literature on cracked rotors, apart from those related to the crack-breathing 
phenomenon, analyses the dynamic behaviour of the rotating machines by carrying out numerical 
simulations using a Jeffcott rotor with a crack in the disk position. 

In these cases, the analytical models and the numerical simulations have shown that the system 
may become unstable for certain values of the rotational speed and of the crack depth. However, the 
Jeffcott model, which is useful for the introduction of basic problems, may be not representative of 
the actual system dynamics (cracked or un-cracked cases), especially in the case of strongly 
nonlinear systems.  

To evaluate the response of actual systems when a crack appears and propagates, the 
implementation of a more complex model is required.  

Among the parts that compose rotating machineries employed in power plants, generators are 
often affected by cracks. Several such cases in the last 50 years have been documented in 
[18][19][20][21]. Therefore, the theoretical stability of the dynamic behaviour of a generator, 
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similar to that described in [1][16][17], is considered in this paper. In these cases, the cracked 
section reached ~50% of the cross-sectional area (figure 1) when the unit had operated for 
approximately 133,000 hours. The crack growth proceeded over a period of seven years and 
approximately 150 start-ups, while only one year was sufficient for the growth of the last 25% of 
the cross-section area. This generator experienced notably high vibration levels, especially during 
the last few coast-downs before removal from service; however, the equipment did not display 
instability. 
 

 
Figure 1. Crack shape on the cross-section of a generator (from [1]). 

 
The portion of the complete machine taken into consideration in this work has length of 17 m 

and includes the exciter. The external diameters change depending on the position along the rotation 
axis, the internal diameter remains constant due to the hollow that exists to reduce the rotor weight 
and to allow the fitting of copper bars. The generator and the exciter are supported by three journal 
bearings; the first is located near the rigid coupling that connects the generator to the low-pressure 
turbine, and the others are located at the opposite rotor end.  

As shown in figure 2, the model of the rotor is composed of 33 beam elements, and the bearings 
and pedestals are numbered from left to right. Each finite element has eight d.o.f.s (see figure 3); 
four of them are the displacements in the two directions orthogonal to the rotating axis, and the 
other four are the rotations around previous directions. The possible cracked elements that will be 
considered in the paper are shown as shaded in figure 2, and their positions correspond to those of 
cracks discovered on real generators (see [1]). 
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The effect of the oil-film forces in the journal bearings is modelled by means of linearised 
dynamic coefficients, and the foundation is modelled by means of pedestals.  

All of the data shown in figure 4 and figure 5 are provided by the machine manufacturer for 
rotational speeds ranging from 300 rpm and 3000 rpm and were not recalculated in this work. Note 
that the pedestal coefficients for supports #1 and #2 are considered as speed-dependent and are 
tuned to reproduce the horizontal foundation resonance that occurred in the actual machine. 
 

 
Figure 2. Finite element model of the generator. 

 
Figure 3. Beam element with eight d.o.f.s used for rotor modelling. 

 
Different configurations were tested in terms of modelling to analyse the effects of the bearings 

and the pedestals on the stability. The four configuration tested are listed in table 1. 

Table 1. Modelling configurations. 

 Bearing coefficients Pedestal coefficients 

Configuration 1 Constant Constant 

Configuration 2 
Dependent on 

rotational speed 
Constant 

Configuration 3 Constant 
Dependent on 

rotational speed 

Configuration 4 
Dependent on 

rotational speed 
Dependent on 

rotational speed 
 

In the first configuration, the dynamic coefficients of the bearings and the pedestals are 
considered to be independent of the rotational speed. Therefore, the stiffness and damping 
parameters are constant and are equal to the values assumed at 300 rpm.  

In the second configuration, the effect of the bearings on the stability has been investigated; the 
bearing dynamic coefficients vary as shown in figure 4, whereas the foundation values are equal to 
those of configuration 1.  
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Bearing #1 

 
 

Bearing #2 

 
 

Bearing #3 

 
Figure 4. Linearised stiffness and damping coefficients for the bearings of the generator 

model. 
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Pedestal #1

 

Pedestal #2 

 
Pedestal #3 

 
Figure 5. Linearised stiffness and damping coefficients for the pedestals of the generator 

model. 

 
In the third configuration, the effect of the foundation alone is investigated; the stiffness and 

damping coefficients of the pedestals are defined according to figure 5, while the bearing dynamic 
coefficients are equal to those of configuration 1. 

Finally, in the last configuration, both the bearing and pedestal dynamic coefficients are 
considered to be speed-dependent, as shown in figure 4 and figure 5. 

The matrices of the assembled rotor model (i.e., rotor + bearings + pedestals) are evaluated 
using RAFT, the software for rotordynamic analysis created by Politecnico di Milano. The mass, 
the damping, the stiffness and the gyroscopic-effect matrices are calculated for the rotational speed 
range of 300 rpm to 3000 rpm using steps of 50 rpm. Because four different configurations of the 
bearing and pedestal models have been considered, the global matrices of the system have been 
calculated for each configuration. 

The simulated response of the rotor system for bearing #1 is shown in figure 6, arising from an 
unbalance of 0.4 kgm located in the middle of the generator for the four configurations.  

It is possible to note that responses are similar in the low rotational speed range because the first 
critical speeds are practically the same for all configurations and are equal to approximately 720 
and 900 rpm, respectively, for the horizontal and vertical directions. In contrast, the second critical 
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speeds depend on the modelling configuration and range from 2400 to 2600 rpm. Anti-resonance is 
also present in the horizontal direction close to 2900 rpm for configurations 3 and 4 as a 
consequence of the foundation resonance. 
 

Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 6. Unbalance responses of different generator model configurations in bearing #1. 

 
3. Crack modelling 

The main consequence of a crack in a rotating shaft is the periodic local variation of the 
stiffness. Many papers in the literature describe this topic and also consider the second-order effects. 
In this paper, the rotor stability is related to the periodic variation of the local stiffness created by 
the presence of a crack by means of periodic variation in the rotor stiffness coefficients. Thus, the 
system of the motion equations of the horizontal rotor is in the form: 

( , )t+ + = +Mx Cx K x x W U   (1)  

where the external force system on the right hand side of Eq. (1) is composed of the weight W  and 
the unbalance forces U . If a heavy horizontal rotor undamaged by crack is considered, the static 
deflection 0x  is due to the rotor weight and is largely compared to the additional deflections caused 
by the dynamics of the rotating shaft [1]. 

By considering that the stiffness depends on the steering function ( )tψ  that governs the 
breathing mechanism, ( , )tK x  can be split into two parts, as shown in [6]: 

( ) ( )0 0( , ) , ( ) , ( ) ( , )t t t tψ ψ= = + ∆ = + ∆K x K x K K x K K x   (2)   
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We highlight the weight dominance in Eq. (1) to linearise the equation of motion, by including 
first Eq. (2) : 

( )0 ( , )t+ + + ∆ = +Mx Cx K K x x W U   (3)    

and then the rotor deflections are split into the static 0x  and the dynamic parts ( )t∆x : 

0( ) ( )t t= + ∆x x x  (4)     

with 0( )t∆x x . Therefore, Eq. (3) becomes: 

( )( )0 0 0( ( ), )t t∆ + ∆ + + ∆ + ∆ + ∆ = +M x C x K K x x x x W U   (5)      

For the static equilibrium: 

0 0 =K x W  (6)       

The weight deflection is dominant and will govern the opening and closing of the crack because 
the vibration amplitudes ( )t∆x  are small compared to the static deflection 0x ; then, 

( , ) ( )t t∆ = ∆K x K . The equations of motion become linear, but periodically time-variant: 

( )0 0( ) ( )t t∆ + ∆ + + ∆ ∆ = −∆ +M x C x K K x K x U   (7)        

because the static equilibrium can be separated. 
The periodic time-variant stiffness matrix ( )t∆K  appears twice. On the left-hand side, it 

determines whether the system is stable (together with the damping). The homogenous part of 
Eq. (7) contains periodically time-variant coefficients, and its stability can be evaluated by means of 
the Floquet theory. 

The relationship between the stiffness variation of the cracked elements and the crack depth for 
the generator considered in Section 2 (as shown in figure 7) has been evaluated by considering a 3D 
FEM model of the parts in which the crack develops at different depths (see figure 8). 

 
Figure 7. Stiffness variation as a function of crack depth. 
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Figure 8. 3D FEM model used to calculate the stiffness variation as a function of crack depth 

of figure 7. 

The selection of the most suitable steering function ( )tψ  depends on the crack breathing 
mechanism. In the past, modelling of the breathing has been usually disregarded in the stability 
analysis, and the transition from a closed crack to an open crack has been generally considered to be 
abrupt [3], as in the so called hinge model, or given by a trigonometric function [22]. Gasch states 
in [6] that the breathing function can be expressed by means of a switching function for a small 
depth of crack, while a more complex expression (i.e., a cosine Fourier expansion) is advisable for 
deeper cracks. 

This observation can be explained not only by the need for simplification but also by the fact 
that the strain energy release rate (SERR) approach (discussed by Papadopuolos [23] and often used 
in solid mechanics to calculate the additional flexibility caused by a crack) is valid only for the fully 
open crack. The SERR approach cannot be extended to other intermediate situations that are typical 
of rotating shafts without the application of rather complex modifications to the SERR approach, as 
shown by Darpe et al. [24] and Papadoupolos [25]. The same approach also has been used by Xu et 
al. [26] for time-step calculations in which the breathing behaviour was also determined by the 
vibrations. Varé and Andrieux [27] developed a model in the time domain in which the true 
breathing mechanism, or the compliance of the cracked element, is directly evaluated by means of a 
3D model as a function of the applied forces in each time step. In addition, Georgantzinos and 
Anifantis [28] used the finite element approach for modelling the breathing phenomenon. They 
considered different configurations and the depth and shape of the crack, and performed a non-
linear analysis to take into account the contacts that occur between the crack surfaces when the 
crack closes. The variation in the stiffness coefficients that was obtained is quite similar to the 
trends proposed in other studies.  

A simplified approach that is also able to take into account the presence of thermal transients is 
presented by Bachschmid et al. [29] and validated by experimental tests performed on a crack 
specimen [30]. These last tests showed that the steering function is dissimilar to the on-off function, 
but a transition phase exists between the closed and open crack configuration. Therefore, the 
steering function used in this paper (shown in figure 9) is obtained from the experimental tests 
described in [1][30]. 
 
4. Application of the Floquet theory to the multi-degrees of freedom rotor system 

To better understand the results obtained in the next sections, we review the basics of the multi-
dimensional Floquet theory.  The equations of the free motion of a general mechanical system with 
m  d.o.f.s are usually described in matrix form as: 
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( ) ( ) ( )t t t+ + =Mx Cx Kx 0   (8) 

where M , C , and K  are the mass, damping, and stiffness system matrices, respectively, and ( )tx  

is the vector of the generalised displacements. Because free motion is considered, the right-hand 
side of the second-order differential matrix equation is set equal to zero. 
 

 
Figure 9. Steering functions used for modelling the crack breathing mechanism. 

 
The free motion of the mechanical system can also be described in terms of the state equation. 

An identity is added to Eq. (2) such that:  

( ) ( ) ( )
( ) ( )

t t t

t t
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M x M x
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 (9) 

and a change of variables is performed: 
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( )
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;
t t
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y y
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
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By substituting the new variables of Eq. (4) into Eq. (3), we obtain: 

( ) ( )t t   
+ =   −   

M 0 C K
y y 0

0 M M 0
  (11) 

It is now possible to define the matrices B  and D , of size (2 2 ) ( )m m n n× = × , as: 

,   
= =   −   

M 0 C K
B D

0 M K 0
 (12) 
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( ) ( )t t+ =By Dy 0  (13) 

where matrix B  is symmetric and positive because it is composed of the system mass matrices. By 
imposing: 

1−= −A B D  (14) 

the system becomes:  

( ) ( )t t=y Ay  (15) 

The square matrix A  is the state matrix of the system because it represents the connection 
between the vector of the variables and their derivatives. If the physical characteristics of the 
mechanical system are time-dependent, i.e., change with the time t , then Eq. (9) is rewritten as: 

( ) ( ) ( )t t t=y A y  (16) 

The shaft stiffness changes periodically due to the breathing effect for rotating systems affected 
by a crack whose equation of motion is given by Eq. (7). In this case, by using T  to indicate the 
period of the rotating system, it is possible to consider the state matrix as periodic: 

( ) ( )t t T= +A A  (17) 

The Floquet theory is suitable for application to systems modelled by means of time-dependent 
and periodic ordinary differential equations [31][32]. The main steps of the multi-dimensional FA, 
performed by applying the multi-dimensional Floquet theory, are presented in this work, beginning 
with the first-order system described in Eq. (10), to better understand both the meaning and the 
usefulness of Floquet theory in the study of rotating system stability.  

The fundamental theorem of the Floquet theory states that the regular system of Eq. (10) has at 
least one non-trivial solution of the type:  

( ) ( )t t=y χ  (18) 

such as: 

( ) ( )t T tµ+ =χ χ  (19) 

With the aim of demonstrating the theorem statement, the fundamental matrix of the system is 
defined as: 

( )ij tφ =  Φ  (20) 

The fundamental matrix is the matrix of the solutions of the system in Eq. (10) such that: 

( ) ( ) ( )t t t=Φ A Φ  (21) 

Because ( )tA  is periodic, ( )t T+Φ  also satisfies the same equation: 

( ) ( ) ( )t T t t T+ = +Φ A Φ  (22) 

Because: 

( )( )det 0t T+ ≠Φ  (23) 
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matrix ( )t T+Φ  is another fundamental matrix, the columns of which represents the solutions of 

the system and are linear combinations of those of ( )tΦ ; the relationship between the two 

fundamental matrices is: 

( ) ( )
1

n

ij ik kj
k

t T t eφ φ
=

+ = ⋅∑  (24) 

where kje  are constants. This is equivalent in matrix form to: 

( ) ( )t T t+ =Φ Φ E  (25) 

The determinant of E  is different from zero because the determinants of both fundamental 
matrices are different from zero. The matrix E  is then non-singular and can be calculated as: 

( ) ( )1t t T−= +E Φ Φ  (26) 

After the definition of this matrix, it is possible to determine the eigenvalues of E  by means of: 

( )det 0µ− =E I  (27) 

where µ  is a generic matrix eigenvalue. The eigenvector s  corresponding to the eigenvalue µ  is: 

( ) 0µ− =E I s  (28) 

It is now possible to define: 

( ) ( )t t=χ Φ s  (29) 

which is a solution of the system in Eq. (10) because it is a linear combination of the columns of the 
fundamental matrix ( )tΦ . By evaluating Eq. (23) after a period T : 

( ) ( )t T t T+ = +χ Φ s  (30) 

and replacing Eq. (19) in Eq. (24), it follows that: 

( ) ( ) ( )t T t t µ+ = =χ Φ Es Φ s  (31) 

and by means the relation expressed by Eq. (23), Eq. (25) becomes: 

( ) ( )t T tµ+ =χ χ  (32) 

which is the statement of the Floquet theorem.  
Matrix E  is called the transition matrix, and its eigenvalues are known as the characteristic 

multipliers. From a physical point of view, E  represents the evolution of the modelled system 
during one period; this assumption can be easily understood by considering that E  expresses the 
relationship between the fundamental matrices at times t  and t T+ . Therefore, the eigenvalues of 
the matrix E  are indices of the system stability. An unstable system is characterised by expansive 
motion, i.e., the solution of the equation at time t T+  is “larger” than that calculated at time t . In 
contrast, the system is stable when the solutions do not increase at each period. By considering that 
the relationship between the fundamental matrices after a period T  is represented by a linear 
combination by means of the transition matrix E  (see eq. (19)), the condition for the system 
stability is: 
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1i iµ µ< ∀  (33) 

Therefore, performing a stability analysis of the modelled system is quite simple by means of 
FA after the definition of the transition matrix E  because it is based on its eigenvalues. 
Unfortunately, the analytical determination of the transition matrix is impossible for rotor systems 
modelled with several d.o.f.s, and thus numerical approaches must be used.  
 
5. Algorithms for the evaluation of the transition matrix  

Several different algorithms for FA are proposed in the literature, and two of them are 
considered in this paper. The first is called the single-iteration pass (SIP) and allows the transition 
matrix to be calculated by means of one integration only (i.e., straight integration). The second 
algorithm is called the n-integration passes (NIP) and, in contrast to the first algorithm, is based on 
n integrations with n equal to twice the number of d.o.f.s (i.e., the system size). 

The two algorithms are quite different in terms of both implementation and required 
computational time. Contrary to what is stated in [33], in which the application of FA to simple 
systems leads to misleading conclusions, the two algorithms may provide different results. The 
differences in the required computational time and the results will be discussed in the next 
subsection.  

It is worth noting that other methods have also been suggested in the literature for the analysis 
of periodic systems, namely the Chebyshev polynomials ([34], [35]), the finite time element methods 
([36], [37]), and the so-called semi-discretisation method ([37], [38]). Chebyshev polynomials are 
based on the same algorithms discussed in this work, and the collocation approach is useful when 
the equation coefficients are characterised by discontinuities. Because the stiffness matrix definition 
is continuous in time (i.e., the steering function is continuous in time), the collocation approach is 
not required in this application. The other two methods have been used successfully to study 
machine tool chatter. 

 
5.1. Single-integration pass algorithm 

The most immediate approach uses the SIP algorithm [33], which is based on the definition of 
the transition matrix between the initial condition and the condition after one period (i.e., 0t =  and 
t T= ). By considering Eqs. (15), (16) and (20), it follows that: 

( ) ( )0, e t TT = AE  (34) 

This method foresees the approximation of the time-dependent state matrix by means of a series 
of constant matrices. To obtain this objective, the period T  is divided into K  equal intervals of 
amplitude ∆ : at each interval kt , with 0 k K≤ ≤  and 1 20 k Kt t t t T< < < < < =  , ( )tA  is 

evaluated:  

( )
1

1 d ,      k

k

t

k kt
ξ ξ ξ τ

−

= ∈
∆ ∫C A  (35) 

where 1k k kt tτ −= − . The transition matrix can be obtained as a product over all of the intervals: 

( ) 1 1 1 1

1

0, ; e e e e k kK K K K

K

a
k

T K − − ∆∆ ∆ ∆

=

= =∏ CC C CE   (36) 
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where the transition matrix is notated as ( )0, ;a T KE  with subscript a  indicating that an 

approximation has been introduced by considering the constant matrices instead of the real matrices. 
Next, the terms of the product in Eq. (30) can be expressed by exploiting the definition of the matrix 
exponential as: 

( )
1

e
!

k k

j
k k

j j

∞
∆

=

∆
= +∑C C

I  (37) 

For sufficiently small time intervals, the series in the previous equation can be evaluated by 
means of a finite number of terms:  

( )
1

e
!

k k

jJ
k k

j j
∆

=

∆
≅ +∑C C

I  (38) 

where the number of terms J  is usually taken as equal to 4. The second approximation of the 
transition matrix calculation is then related to the evaluation of the elements of the product, and the 
error induced for each element is given by the remainder of the series: 

( )
1 !

j
k k

j J j

∞

= +

∆
∑

C
 (39) 

With these considerations, the transition matrix after two approximations aaE  can be obtained 
by means of the following expression: 

( ) ( )
11

0, ;
!

jK J
k k

aa
ji

T K
j==

 ∆
= + 

 
 

∑∏
C

E I  (40) 

The SIP algorithm works correctly in the FA of simple models, but it is affected by numerical 
problems when more complex and computationally expensive models are considered, i.e., those 
with “bigger” size. These problems are closely related to the evaluation of the exponential matrix, 
which is a delicate operation from a numerical point of view. 

The calculation of the exponential matrix can be performed in several ways [39], [40], [41]. One 
way is to use a series expansion, such as the Taylor expansion, and the performances of the 
algorithms based on this approach depend on the number of terms considered in the expansion. The 
a priori definition of the optimal number of expansion terms to be considered is the critical point of 
this method ([42], [43]): the accuracy of the calculation of the matrix exponential does not increase 
proportionally with the increase in the number of the expansion terms considered. This problem is 
widely known in computational mathematics as the Hump phenomenon. 

To solve this problem, the authors propose the use of iSIP, which is a modification of the SIP 
algorithm by means of the use of a Pade approximation for the calculation of the exponential matrix. 
The Pade approximation [44] is a ratio between two expansions: 

( )
( )

2
0 1 2

2
0 1 2

p
p

q
q

a a a a
e

b b b b

+ + + +
≈ =

+ + + +
A

I A A A
B

I A A A




 (41) 

The Pade approximation is accurate only for 
2

1 2<A , otherwise the scaling and squaring 

method is considered [45]. This method is based on the consideration that: 
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( ) ( )222 2
k

k

e e e= =A A A  (42) 

If 1 2>A  then 2 1 2k <A  for ( )2log 1k < +A , the Pade approximation is calculated and 

then raised to the second power k  times. This modification renders the first algorithm suitable for 
the multi-dimensional FA of complex rotor models. 
 
5.2. N-integration passes algorithm 

The NIP algorithm is based on the evaluation of the fundamental matrices at both the beginning 
and the end of the period. The initial fundamental matrix can be expressed as [33]: 

( ) ( ) ( ) ( )1 20 0 00 | | | n=   Φ y y y  (43) 

where the i th  column vector represents the activation of the i th  d.o.f. of the system and is defined 
as: 

( )0

0

0

i

i
 
 
 =  
 
  

y


 (44) 

The meaning of the activation vector in Eq. (38) is that only the i th  d.o.f. assumes an initial 
value different from zero in the i th  vector, while the others are all null elements. The 
corresponding vector ( )i Ty  at the end of the period T  can be obtained by means of numeric 
integration of the differential system of equations describing the model dynamics. It is worth noting 
that vector ( )i Ty  is generally composed of all non-zero elements because the equations are not 
uncoupled.  

The fundamental matrix at the end of the period is expressed as: 

( ) ( ) ( ) ( )1 2| | | nT T TT =   Φ y y y  (45) 

where the ( )i Ty  column vector represents the vector obtained by means of the numerical 

integration over the period T  with the initial conditions expressed by the ( )0iy  vector. 
From a practical point of view, the two fundamental matrices can be evaluated by imposing one 

d.o.f. at a time different from zero in the initial vector ( )0y  and then numerically integrating the 

equations of motion to obtain the corresponding ( )Ty . By repeating this procedure for all n  d.o.f.s 
of the system, the definition of the initial and the final fundamental matrices is possible. 

The transition matrix, as previously presented in Eq. (20), is given by: 

( ) ( ) ( )1,0 0T T−=E Φ Φ  (46) 

This algorithm is more interesting for full comprehension of the physical meaning of the 
transition matrix. Indeed, the transition matrix compares the final condition of the system with the 
initial condition. The initial fundamental matrix can be considered as an activation matrix because 
the i th  column vector represents the activation of the i th  d.o.f. only. 

However, similar to the SIP algorithm, the NIP is also affected by computational inaccuracies 
when models with several d.o.f.s are considered. In this case, the increase in the dimension of the 
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matrices involved in integration by the Runge-Kutta method presents a limitation on the use of NIP. 
A suitable modification of this algorithm is proposed hereafter by the authors, similar to what was 
performed for the single iteration pass.  

The Runge-Kutta method, which is often employed in the literature regarding FA for the 
numerical integration of the motion equations, has been replaced with the Newmark method, and 
the remaining steps are unchanged (from Eq. (37) to Eq. (39)). The Newmark method uses matrices 
with dimensions consistent with those of Eq. (6), contrary to the Runge-Kutta method. The 
corresponding NIP modified algorithm is indicated hereafter as NIPN. 

 
5.3. Comparison between the different algorithms 

The improved SIP (iSIP) algorithm (i.e., SIP with the Pade approximation and the scaling and 
squaring method), the NIP, and the NIPN algorithms are used to perform the FA on a cracked 
Jeffcott rotor model, and the results are compared. The natural frequency of the uncracked Jeffcott 
rotor is 15 Hz (i.e., 900 rpm), and the damping is equal to 2% of the critical damping. 

The results obtained are shown in Figure 10 in which the value of the characteristic multiplier is 
plotted on the left side, and the contour map of the level equal to 1 is plotted on the right. The 
collective results are similar and coherent with those from the studies proposed in the past, except 
for NIPN, in which the use of the Newmark method causes the introduction of additional damping 
in the system. Instability arises for rotational speeds of approximately 600 rpm, 900 rpm, and 
1800 rpm: the first value represents the 2/3 sub-synchronous component of the flexural critical 
speed while the others are its 1X and 2X harmonics. The positions of the instability zones 
correspond to those of [1], [3], [4], [5] and [6], except for NIPN, for which the sub-synchronous 
zone disappears due to the additional damping introduced. 

The iSIP will be used to carry out the FA on the generator model presented in Section 2 because 
the analysis performed by means of the iSIP confirms the results already obtained in literature and 
because it is the fastest method from a computational point of view when applied to systems with 
several d.o.f.s.  
 
6. Results of the Floquet analysis applied to the generator model 

As previously mentioned in Sections 2 and 3, the simulations were performed for four different 
configurations of the bearings and pedestals and for three different crack positions located along the 
shaft axis for a total number of twelve simulations. Each simulation was performed for rotational 
speeds ranging from 300 rpm to 3000 rpm and crack depths in the range of 0–25% of the rotor 
diameter. Although the rotational speed range has been selected by considering the typical speed 
transients of the generator, the maximum crack depth has been limited under the following 
constraints: i) the computational time required by each simulation and ii) the presence of a crack 
with 25% depth is considered to be too dangerous for operation of the rotor. A single simulation 
includes 254 rotational speeds and 11 crack depths in the aforementioned ranges for a 
computational time of approximately five days of PC work. In this way, the transition matrices and 
the characteristic multipliers are obtained for each configuration at the different rotational speeds 
and crack depths.  

According to Eq. (27), instability arises when at least one characteristic multiplier is greater 
than one. From a practical point of view, this implies a check of all of the characteristic multipliers 
calculated from the transition matrix. However, the multipliers can be grouped by considering their 
magnitudes. Therefore, only one multiplier for each group must be checked, thus avoiding a one-
by-one assessment. For this reason and for the sake of brevity, not all exponents will be reported 
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and discussed in this work. Only two multipliers are shown, namely, the 1st and the 40th, which 
represent the different categories of magnitude. 
 

iSIP 

  
 

NIP 

  
NIPN 

  
Figure 10. Characteristic multiplier for a cracked Jeffcott rotor with a natural frequency of 

15 Hz. 

 
Figure 11 shows the distributions of the first characteristic multiplier for a crack in the 10th 

element for the four configurations. It should be noted that the multiplier distribution is quite 
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different from that proposed in [1], [3], [4], [5] and [6] for any Jeffcott rotor: the dynamic stability 
of the generator is guaranteed by the fact that the multiplier is lower than one for all conditions of 
the rotational speed and crack depth. The trend of the multiplier seems mainly governed by the 
speed and is practically independent from the crack depth. The values close to one are obtained in 
correspondence with low rotational speeds while a sort of plateau appears at high speeds. The 
results are nearly the same for all four configurations. Therefore, the results obtained for the first 
characteristic multiplier and for a crack in the 10th element of the generator indicate that the system 
is stable, independent from the rotational speed and crack depth considered. Moreover, the different 
approaches to modelling of the bearings and foundation have negligible effects on the multiplier 
distribution and thus on the stability of the generator. 
 

Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 11. First characteristic multiplier for a crack in the 10th element. 

 
As previously stated, with the aim of assessing the dependence of the stability on the crack 

position, simulations for a crack in the 18th element of the generator have also been performed. The 
distributions of the first characteristic multiplier for the four modelling configurations and for this 
crack position are shown in figure 12. Similar to the results obtained for a crack in the 10th element, 
the stability threshold is not reached for any combination of rotational speeds and crack depths 
considered.  
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Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 12. First characteristic multiplier for a crack in the 18th element. 

 
The distributions of the first characteristic multiplier, calculated for a crack in the final part of 

the rotor (i.e., the 23rd element of the generator) and for different modelling configurations, are 
shown in figure 13. For this crack position, the generator behaviour is also stable regardless of the 
rotational speed and the crack depth. Moreover, the obtained trends are quite similar to those 
characterising the other crack positions: independent of the configuration, high multiplier values are 
reached for low rotational speeds, while the multiplier remains close to zero at high speeds.  
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Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 13. First characteristic multiplier for a crack in the 23rd element. 

 
Next, another group of multipliers is considered, and the 40th characteristic multiplier is taken as 

an example. The corresponding distributions are shown in figure 14 for a crack located in the 10th 
element. 

In contrast to the first multiplier (see figure 11), whose values were reduced with the increase in 
rotational speed, in this case, the high values characterising low speeds decayed at 1200 rpm and 
increased again for higher rotational speeds. This result notwithstanding, the conclusion of the FA is 
the same: the dynamic behaviour of the generator is stable over the entire rotational speed-crack 
depth plane because the 40th characteristic multiplier does not exceed the value of one for all four 
configurations.  
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Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 14. 40th characteristic multiplier for a crack in the 10th element. 
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Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 15. 40th characteristic multiplier for a crack in the 18th element. 
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Configuration 1 Configuration 2 

  
Configuration 3 Configuration 4 

  
Figure 16. 40th characteristic multiplier for a crack in the 23rd element. 

 
Similar results are also obtained for cracks located in the 18th and 23rd elements of the generator, 

as shown respectively in figure 15 and figure 16. 
For the sake of brevity, no further distributions of multipliers are reported, but none reach the 

instability threshold in the considered ranges of rotational speed and crack depth. 
This result implies that the generator under consideration never reaches instability, even with a 

rather deep crack located in the positions where it frequently develops in practice. These theoretical 
results are confirmed by the experimental evidence from the corresponding real machines (similar 
generators) described in [1][16][17]. 

The differences in behaviour between a cracked Jeffcott rotor and the model of a cracked real 
machine rotor can be explained by considering that the stability of the system is determined by the 
structure of its matrices. The anisotropic and periodical components caused by the crack in the 
stiffness matrix are less influential in a system with several d.o.f.s, where few elements of the 
stiffness matrix are involved, than in a Jeffcott rotor.  

In other words, the crack effect is “local” for any model of a real machine and “global” for any 
Jeffcott rotor. Moreover, any machine equipped with journal bearings contains high damping that 
may significantly raise the instability threshold. 

However, the results obtained in this paper are rather remarkable because they show that in 
systems that are more realistic than the Jeffcott rotor model, the instability onset does not occur 
even in the presence of cracks with a depth that is considered dangerous for machine operation. 



24 
 

This result implies that the commonly acknowledged symptoms used to diagnose the presence of a 
transverse crack (see the details reported in [1]) are the most suitable. The instability might not 
occur in real rotors in practice before that crack has propagated to the extent that the machine 
operation would be impossible.  
 
7. Conclusions 

One of the most studied faults in rotating machines is that of the transverse crack, and it is 
commonly acknowledged in the literature that cracks in a horizontal rotating shaft can cause 
instability of the rotor dynamic behaviour. This consideration follows from the application of 
Floquet theory to a hinge model on a Jeffcott rotor.  

The aim of the paper is the application of Floquet analysis to a real rotor model to study the 
stability of the shaft in the presence of a transverse crack. Certain important modifications have 
been introduced by the authors via the algorithms presented in the literature for the purpose of 
performing multi-dimensional Floquet analysis. These improvements have allowed this method to 
be suitable for models characterised by a high number of d.o.f.s.  

Multi-dimensional Floquet analysis has been performed on a model of a generator that also 
considers the journal bearings and foundations, and different modelling configurations and crack 
positions have been considered to assess their effects on the rotor stability. Additionally, an 
improved algorithm has been developed by the authors and introduced in this work to perform 
multi-dimensional Floquet analysis in an acceptable time. The simulations have provided significant 
results: for any rotational speed in the machine operating range, crack depth, crack position and 
modelling of bearings and foundation, the rotor can be characterised by stable behaviour. All of the 
characteristic multipliers calculated for all of the considered configurations have assumed values 
less than one. 

Considering the results provided by the Floquet analysis, it is possible to state that instability 
does not arise in this case. This rotor behaviour is consistent with case histories reported in the 
literature of generators affected by deep cracks, as listed in the paper. Obviously, the results 
obtained by the present Floquet analysis cannot be assumed as valid for all rotating machines 
affected by transversal cracks. However, the result obtained with the proposed version of the 
Floquet analysis represents a remarkable and original achievement.  

It is authors’ opinion that the instability, which results from Floquet analysis on hinge models 
with a Jeffcott rotor, is mainly due to the large effects of the stiffness variation on the global 
dynamic behaviour of the Jeffcott rotor model. By considering a complex model of a real industrial 
rotor, the stiffness variation associated with the crack becomes a “local” effect, as it is in practice.  
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Figure captions 
 
Figure 1. Crack shape on the cross section of a generator (from [1]). 

Figure 2. Finite element model of the generator. 

Figure 3. Beam element with 8 d.o.f.s used for rotor modelling. 

Figure 4. Linearized stiffness and damping coefficients for the bearings of generator model. 

Figure 5. Linearized stiffness and damping coefficients for the pedestals of generator model. 

Figure 6. Unbalance responses of different generator model configurations in bearing #1. 

Figure 7. Stiffness variation as a function of crack depth. 

Figure 8. 3D FEM model used to calculate figure 7. 

Figure 9. Steering functions used for modelling the crack breathing mechanism. 

Figure 10. Characteristic multiplier for a cracked Jeffcott rotor with natural frequency of 15 Hz. 

Figure 11. First characteristic multiplier for a crack in the 10th element. 

Figure 12. First characteristic multiplier for a crack in the 18th element. 

Figure 13. First characteristic multiplier for a crack in the 23rd element. 

Figure 14. 40th characteristic multiplier for a crack in the 10th element. 

Figure 15. 40th characteristic multiplier for a crack in the 18th element. 

Figure 16. 40th characteristic multiplier for a crack in the 23rd element. 

 


