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ABSTRACT 

In industrial field, one of the most important practical problems of rotating machinery 

concerns rotor balancing. Many different methods are used for rotor balancing. 

Traditional influence coefficient method is often employed along with weighted least 

squares in order to reduce vibration amplitude, typically at selected rotating speeds like 

critical or operating ones. Usually the selection of the weights of the least squares 

algorithm is manually made by a skilled operator that can decide in which speed range 

the vibration reduction is more effective. Several methods have been proposed in order 

to avoid operator’s arbitrariness and an automatic procedure based on robust regression 

is introduced in this paper. In particular, the analysis is focused on high breakdown-

point and bounded-influence estimators. Theoretical aspects and properties of these 

methods are investigated. The effectiveness and robustness of the proposed balancing 

procedure are shown by means of an experimental case using a test-rig. 

 

                                                 
 Corresponding author, Phone: (+39) 02-2399.8442, Fax: (+39) 02-2399.8492, Email: steven.chatterton@polimi.it. 

*Manuscript
Click here to view linked References

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55207258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/ymssp/viewRCResults.aspx?pdf=1&docID=2152&rev=1&fileID=84122&msid={6D4560E3-7B8B-4DE1-B0C7-92E58AEF8507}


 2 

1 INTRODUCTION 

As well known in rotating machinery theory, the rotor deforms itself as a consequence 

of unbalances. This could be very dangerous for the efficiency of the machine in which 

the rotor is placed [1]. 

Rotor balancing is realized by means of the application of balancing masses in suitable 

planes of the rotor. The balancing masses are often selected as solution of an 

optimization problem, in which weighted least squares (WLS) are mainly used. 

Obviously, the goal is the reduction of vibrations in some planes of the rotor, usually 

but not necessarily in the measuring planes. The weighted method allows reducing the 

amplitude of vibrations at selected rotating speeds as in flexural critical speeds or in 

operating conditions. It also permits reducing the effect of possible outliers due to noise, 

biases, systematic errors and so on in the experimental data or due to inaccuracies of the 

model. Main drawback of WLS is that the criterion of weight attribution is not univocal 

and normally expert’s operator inspection of the data is required. In this paper, an 

automatic procedure for the balancing masses estimation based on robust regression 

methods is introduced. In particular, the analysis is focused on high breakdown-point 

(HBP) and bounded-influence (BI) estimators, which are very robust with respect to 

outliers [9]. Theoretical aspects and properties of these methods are investigated.  

The effectiveness and robustness of the estimators here introduced have been tested in 

the identification of the balancing masses of the test-rig of Politecnico di Milano (PdM). 

For each method, the results are compared to those of the least squares method and of 

the M-estimator method, used in a previous study, for the same test-rig [19]. The paper 

is organized starting from basic concepts of rotor balancing. In the second part, several 

robust regression methods are analyzed. Finally the experimental application of the 

proposed methods to the test-rig is presented. 

 

1.1 Rotor Balancing Approach 

The influence coefficient method [1][5][17] is the most commonly used approach for 

rotor balancing due to its simplicity and experimental nature. In general, the monitoring 

data are collected for many rotating speeds and on several measuring planes (which 

often correspond to the bearings). On each measuring plane, vibrations are measured 

along one direction or two orthogonal ones depending on the type of the machine. The 

rotating speeds, at which the measures are available, are organized as a vector of 
s

n  

elements 
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T

1 sj nΩ    (1) 

For a flexible rotor, the balancing masses depend on the rotating speed and are obtained 

as a solution of the overdetermined system 

y X θ e  (2) 

 y  is an 2 1
m s

n n  complex (magnitude and phase) vector of experimentally measured 

vibrations for sn  rotating speeds, organized as follows 

T
TTT

1( ) ( ) ( )
sj ny ξ ξ ξ   (3) 

where each term ( )jξ  is a 2 1
m

n  complex vector of experimental vibrations 

measured at jth rotating speed for all mn  measuring planes 

T
TT T

( )(1) ( )( ) ( ) ( ) ( )mnk
j j j jξ ξ ξ ξ   (4) 

and 
T

( ) ( ) ( )( ) ( ) ( )k k k
j V j H jξ ξ ξ  is the 2 1  complex vector of vibrations measured 

in kth measuring plane, at jth rotating speed and along the vertical and the 

horizontal directions. 

 X  is the 2
m s b

n n n  global matrix of influence coefficients at different rotating speed 

T
TTT

1( ) ( ) ( )
sj nX C C C   (5) 

where C  is the 2
m b

n n  matrix of influence coefficients at generic jth rotating 

speed 

1,1 1, 1,

,1 , ,

,1 , ,

( )

b

b

m m m b

w n

k k w k nj

n n w n n

α α α

α α αC

α α α

 

  

  

 

 (6) 

and ,k wα  is the 2 1  generic complex influence coefficient vector, that gives the 

vibrations at generic kth measuring plane (along the two directions) for an unitary 

balancing mass placed at generic wth balancing plane. 
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 θ  is the vector of generalized balancing masses (amplitudes and phases) placed at 

bn  balancing planes 

T
* * *
1 bw nθ θ θ θ   (7) 

where i* e w
w w wr mθ  is the wth generalized mass placed at a pre-established distance 

from the rotating axis ( wr  is the eccentricity of the true balancing mass wm ) 

 e  is the vector of errors at measuring planes for all sn  analyzed rotating speeds. 

 

1.2 Regression Model 

Equation (2) represents the model of a multiple linear regression problem [3][16], that 

could be rewritten as 

T
,1 1 ,i i i p p i i iy x x e e= x θ  (8) 

for 1, ,i n , where 2
m s

n n n  is the number of observations (experimentally measured 

response) and 
b

p n  the number of unknown coefficients or predictors (generalized 

balancing masses). 

In statistical terms y  is called vector of response variables, X  matrix of predictors, θ  

vector of predictors. For a given parameters estimate θ̂ , the residuals are given by 

T ˆ
i i ir y= x θ  (9) 

or in matrix notation by ˆr = y X θ , where ˆŷ X θ  is the estimated response. 

Object of the estimation process is to identify the balancing masses θ̂  that, in general, 

minimize a function of residuals. 

 

1.3 Least Squares (LS) 

Classical least squares regression consists of minimizing the sum of squared residuals 

2 T

1

ˆ = min min

n

LS i

i

r
θ θ

θ r r  (10) 

where T
r  denotes the conjugate vector transpose. The minimization is obtained 

equating to zero the first derivative of the objective function with respect to θ  for all 

cases, by means of the Moore-Penrose’s pseudo-inverse matrix 
†

X  
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1
† T Tˆ

LSθ X y X X X y  (11) 

where 
T

X  denotes the Hermitian transpose. 

In spite of its computational simplicity, the least squares estimator is characterized by 

lack of robustness, i.e. one single contaminated data could have an arbitrarily large 

effect on the estimate. 

 

1.4 MiniMax (L∞) 

The minimax estimator [5] minimizes the worst residual: 

2ˆ = min maxL i
i

r
θ

θ θ  (12) 

The robustness is weak as in LS method, because outlier points are not identified. 

If complex data values are taken into account, the minimization is performed both for 

the real part and for the imaginary part. 

 

2 ROBUST REGRESSION 

The points that breakdown the estimate are called influential points [26] and could be 

classified as: 

 vertical outliers (also regression outliers or simply outliers) when they are far from 

the linear pattern of the majority of the data but whose 
i

x  is not outlying; 

 leverage points (or influential predictors) when 
i

x  is outlying. A point ,
i i

yx  is a 

good leverage point if it follows the pattern of the majority and a bad leverage point 

otherwise. 

In the first case, the breakdown-point (BP), introduced by Hampel in 1971 [12] as an 

asymptotic concept and developed by Donoho and Huber [11] for the corresponding 

finite sample notion, is a typical measure of robustness. For finite sample, it is defined 

as the smallest percentage of contaminated data (outliers) that could cause the estimator 

to take on arbitrarily large values. Given the regression method T , the breakdown-point 

for a sample data set Z  is defined as 

*

*, min : sup ( ) ( )n
Z

m
T Z T Z T Z

n
 (13) 
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where the supremum is for all samples *Z  obtained arbitrarily changing m  original 

observations in the set Z . On the contrary, the asymptotic breakdown-point  is 

defined as the limit of the finite sample breakdown-point when n  goes to infinity. High 

breakdown-point (HBP) estimators are able to increase the robustness in regression 

cases. Obviously a breakdown-point cannot exceed 50%: if more than half of the 

observations are contaminated, it is not possible to distinguish between the underlying 

distribution and the contaminating distribution. 

For leverage points, the so called influence function (IF) [13][18], describes the local 

effect on the estimator T  of an additional observation. In this case a standard measure 

of leverage is the size of the diagonal elements of the so called prediction or hat matrix 

H , and many estimators use this quantity to detect and downweight leverage values. In 

general this measure is given by iih , the ith diagonal term of the hat matrix 

1
T T

H X X X X  (14) 

Estimators that bound the influence of any single element of row of X  are able to 

guard against leverage points as well as regression outliers. These are usually called 

bounded-influence (BI) estimators. 

 

2.1 Weighted Least Squares (WLS) 

The first step in robustness improving could be obtained manually by removing outlier 

data, or by assigning weights to several observations. In this way some measured 

vibrations are downweighted in order to give more importance to the corresponding 

rotating speed such as at rated speed or at critical speeds. In other words, it is necessary 

to minimize the quantity 

2 T

1

ˆ min min

n

WLS i i

i

w r
θ θ

θ r W r  (15) 

where W  is the diagonal matrix of weights 
i

w . The solution is obtained by means of 

the weighted pseudo-inverse matrix 
†

W
X  

1
† T Tˆ

WLS W
θ X y X W X X W y  (16) 

 



 7 

2.2 M-estimators 

One of the most important robust regression method is the M-estimator, a generalization 

of maximum likelihood estimators (MLEs) introduced by Huber in 1981 [15] based on 

the minimization of a symmetric function  of the standardized residuals, with a unique 

minimum at zero 

T

1 1

ˆ = min min
ˆ ˆ

n n
i i i

M

i i

r y

θ θ

x θ
θ  (17) 

where ˆ  is a robust estimation of the scale parameter  of the error distribution. 

Parameter estimation in mechanical system often uses vibration data that are complex 

number. Since complex numbers are bivariate data, they can be conceived as the 

simplest case of multidimensional distribution for which the estimation can be realized 

considering the concept of data depth: Tukey’s [23] median absolute deviation (TMAD) 

could be then used [18] 

ˆ TMAD( ) med Tr r θ r θ  (18) 

where T ( )  is the Tukey’s median operator. The M-estimate of the regression parameter 

θ , solution of problem (17), is obtained equating to zero the first derivative of  with 

respect to j  

T

1

ˆ
0

ˆ

n

i i M
ij

i

y
x

x θ
 (19) 

where the function d / d j  is proportional to the influence function that describes 

the behavior of M-estimators [13]. 

The solution ˆ
Mθ  is computed by means of an iterative algorithm called iteratively 

reweighted least-squares (IRLS) [7][18][29]. 

The convergence of the values of θ̂  is achieved upon a stated criterion, for instance 

1

1

k k

k
 (20) 

where  is a suitable convergence value and k  is the relative residual at kth iteration 

between the experimental data y  and the estimated response ˆŷ X θ , that has the 

following general expression 
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T

T

ˆ ˆy y y y

y y
 (21) 

Making use of weights, the behavior of an M-estimator is represented by the function 

. Several M-estimators with different  functions have been proposed in the last 

years. Huber’s M-estimator method has a good behavior, so it will be used to make 

comparison with the other methods introduced in this paper. Its definition is 

2
1

if
ˆ ˆ2

( )

if
ˆ ˆ2

i i

i

i i

r r
c

r
r c r

c c

 (22) 

The tuning parameter c  for Huber’s estimator is equal to 1.345 and gives 95% of 

asymptotic efficiency with respect to a normal distribution [22]. 

 

3 HIGH BREAKDOWN-POINT METHODS (HBP) 

In general, when data are corrupted by outliers, a robust method should have a high 

breakdown-point (HBP), a bounded-influence function (BI) and good efficiency. A 

desirable property for regression estimates is that the estimate be equivariant with 

respect to affine, regression, and scale transformations [22]. This means that when one 

of these transformations is applied to the data, the estimates will transform in the 

“natural” way. 

A regression equivariant estimator T  has a finite sample breakdown-point 

2 1
,n

n p
T Z

n
 (23) 

at all samples Z , where samples are in general position, i.e. all the subsets p  of the 

data are linearly independent. For least squares and M-estimators the finite sample 

breakdown-point is equal to 1/n n . 

The efficiency of an estimator is normally evaluated in relative terms with respect to the 

mean squared error (MSE) of the residuals. The relative efficiency is defined as the 

ratio of the MSE of the LS method and the MSE of the given robust estimator, under the 

hypothesis of unbiased data set in the LS method. The relative efficiency of two 

methods depends on the sample size available for the given estimator, but it is also 
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possible to use the asymptotic efficiency defined as the limit of the relative efficiency as 

the sample size n  goes to infinity. 

Several equivariant estimators for linear regression with asymptotic breakdown-point 

equal to 0.5 were proposed in the literature: the least median of squares (LMS), the 

least trimmed mean squares (LTS) and the S-estimators. More efficient estimates with 

asymptotic breakdown-point equal to 0.5 are given by the MM-estimators. 

 

3.1 Least Median of Squares (LMS) 

The least median of squares (LMS) method, introduced by Rousseeuw in [20] 

minimizes the median of the squared residuals 

2ˆ = min medLMS i
i

r
θ

θ θ  (24) 

From a different point of view, the LMS method is a robust generalization of classical 

least squares method substituting the sum operator with a more robust median operator. 

This method has an asymptotic breakdown-point equal to 0.5 , it correctly 

approximates only half of the data. Due to exact-fit property, it is possible to obtain a 

regression far from the desired one if outliers are aligned with valid data. 

The basic resampling algorithm for approximating the LMS, was proposed by 

Rousseeuw and Leroy in [22] and further developed in [21]. This algorithm considers a 

trial subset of p-observations and calculates the linear fit passing through them. This 

procedure is repeated many times and the fit with the lowest median of squared 

residuals is retained. In this paper, the basic form of LMS method given by eq. (24) is 

applied. This LMS base form uses weights equal to 0 or 1. A disadvantage of the LMS 

method is its lack of efficiency because of its 1 3n  convergence. 

 

3.2 Least Trimmed Sum of Squares (LTS) 

An improvement with respect to LMS estimator is given by the least trimmed squares 

(LTS) [20][22] that minimizes the following criterion 

2

:
1

ˆ =min

h

LTS i
i n

i

r
θ

θ θ  (25) 

where the value h  is called coverage. The LTS estimator searches for the optimal subset 

of size h  whose least squares fit has the smallest sum of squared residuals. To reach a 
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50% breakdown-point when the data are in general position, the coverage h  is fixed so 

that 2 1 2n p h n p . The objective function of the LTS is more smooth, 

making LTS less sensitive to local effects than LMS. Furthermore it has a convergence 

rate equal to 1 2n , greater than the LMS one, making it more suitable than the LMS as a 

starting point for two-step estimators. 

The estimation and the breakdown-point, obviously depend on the choice of coverage h  

(usually and as in the implemented algorithm, 0.75h n  is assumed). In general it is 

possible to select the coverage as 1 1h n , where  is the portion parameter. In 

this case the asymptotic breakdown-point is . For 0.5  the LMS estimator is 

obtained, whereas the least squares for 0 . 

The computation of the LTS estimator is difficult and if the number of observations is 

higher, the computational load is prohibitive. To overcome this drawback, several 

approximate algorithms have been proposed by Agulló [2][4] and the fast-LTS 

algorithm, also used in the following examples, by Rousseeuw and Van Driessen [25] 

based on the so called concentration-step (C-Step). 

 

3.3 S-Estimators 

Introduced by Rousseeuw and Yohai [24] and developed by Rousseeuw and Leroy [22], 

the S-estimator of the regression parameter θ  is obtained from the minimization of a 

scale function s r θ  of the residuals 

1 2
ˆ =min , , ,S ns r r r

θ
θ θ θ θ  (26) 

and the scale estimator ˆ
S  is 

1 2
ˆ ˆ ˆˆ = , , ,S S S n Ss r r rθ θ θ  (27) 

The scale function is obtained by means of a M-estimation as solution of Huber’s 

equation 

1

1
n

i

i

r
K

n s
 (28) 

where the constant K  is given by EN K , E  is the expected value and N  denotes 

the standard normal distribution. 
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If 0.5K c  the S-estimator has finite breakdown-point 2 2n n p n  at any 

sample in general position (obviously the asymptotic breakdown-point in this condition 

is 50% ). Also in this case several implemented algorithms exist. The algorithm used 

in this paper is based on the fast-S algorithm with 0.5  (in order to obtain the highest 

breakdown-point 50% ), developed by Salibian-Barrera and Yohai [27]. 

 

3.4 MM-Estimators 

S-estimators are highly inefficient when the errors are normally distributed [22]. MM-

estimators introduced by Yohai [31] have instead a high-breakdown-point with high-

efficiency. The algorithm consists of three steps: 

 first an estimate 0θ̂  of θ  is performed by means of a LMS, LTS or S high 

breakdown-point estimator (possibly 0.5 breakdown-point). No high efficiency is 

required at this step. 

 Afterwards the M-estimate ˆ  of scale parameter is evaluated on residuals of the 

previous estimate 0θ . 

 Last step consists of the M-estimate of regression parameters. 

In practice, MM-estimates are based on two functions 0  and 1 , which determine the 

breakdown-point and the efficiency of the estimator, respectively. 

 

4 BOUNDED-INFLUENCE METHODS (BI) 

M-estimators are not resistant to bad leverage points, due to their unbounded influence 

function in position x  [10]. The generalized M-estimators (GM) are estimators resistant 

to high leverage points, that bound the influence of any single element or row of X , so 

they guard against leverage points as well as regression outliers. As said before, a 

standard statistical measure of leverage is the size of the diagonal elements of the hat 

matrix defined by eq. (14). The ith diagonal element of H  is a measure of the potential 

influence or leverage of the ith predictor observation. Matrix H  is symmetric and 

idempotent, so 0 1iih . The eigenvalues are either 0 or 1 and the number of non-zero 

eigenvalues equals its rank, so the trace of X  is p  and E iih p n . Elements iih  that 

are more than 2 or 3 times the expected value are problematic [8]. BI estimators include 

the Mallows-type [28] and the Schweppe-type [13] GM-estimators that bound in 

different ways the influence of position. 
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A simple Schweppe-based version of GM-estimators, implemented in this paper, is 

based on the use of M-estimators working with adjusted or studentized residuals ir , 

using leverage and Huber’s  function 

1

ˆ = min
ˆ

n
i

GM

i

r

θ
θ  (29) 

where the adjusted residuals are 

1

i
i

ii

r
r

h
 

(30) 

ˆ  is a standardized robust estimation of the scale parameter of the adjusted residuals. 

Unfortunately BI estimators have a breakdown-point not greater than 1n p , so they 

could give good results only for a small number of parameters. 

 

5 QUALITY OF ESTIMATION 

The correlation between the measured data and the estimated one is used as index of the 

quality of the estimation. The Pearson product-moment correlation coefficient  is a 

common measure of the correlation between two random variables X  and Y  with 

expected values X  and Y  and standard deviations X  and Y . It is widely used as a 

measure of the strength of linear dependence between two variables, giving a value in 

1, 1  

- -X YXY

X Y X Y

E X Y
 (31) 

where XY  is the covariance. The unitary value is the desired ideal condition, meaning a 

good linear regression estimate. 

The Pearson correlation works well under the hypothesis of normal distribution of two 

variables. When data is affect by outliers a robust measure of the correlation should be 

used like as the Biweight Midcorrelation [30]. Let 

med med

9 MAD 9 MAD

i X i Y
i i

X Y

X Y
U V  (32) 

The sample biweight midcovariance between X  and Y  is given by 
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2 2
2 2

2 2 2 2

med 1 med 1

1 1 5 1 1 5

i i X i i i Y i
i

bXY

i i i i i i
i i

n a X U b Y V
s

a U U b V V
 (33) 

where 

1 if 1 1 otherwise 0

1 if 1 1 otherwise 0

i i i

i i i

a U a

b V b
 (34) 

An estimate of the biweight midcorrelation between X  and Y  is given by 

bXY
b

bX bY

s
r

s s
 (35) 

where bXs  and bYs  are the biweight midvariances for the X  and Y  scores. 

In this case the correlation is analyzed between the measured vibration y  and the 

estimated one ŷ . 

Supposing to know the true value θ  of predictors θ , it could be possible to evaluate the 

effectiveness of the estimation by means of the global relative error G  between the 

vector of known values and the estimated one using the Euclidean norm that for 

complex number is correctly given by 

T

T

ˆ ˆ

G

θ θ θ θ

θ θ
 (36) 

The same index could be evaluated for the wth balancing mass (wth relative error) 

T

w w w w

T
ww w

ˆ ˆθ θ θ θ
1, ,

θ θ
w bw n  (37) 

 

 

6 CASE STUDY 

The behavior of all high breakdown-point and bounded-influence estimators here 

introduced has been tested in the identification of the balancing masses of a rotating 

machine: the test-rig of Politecnico di Milano (PdM). 

The test-rig, shown in Figure 1, is composed of two rigidly coupled steel shafts, driven 

by a variable speed electric motor and supported by four elliptical-shaped oil film 
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bearings (labelled as A, B, C and D). Rotor train is about 2 m long and has a mass of 

about 90 kg. The rotors have three critical speeds within the operating speed range of 0-

6000 rpm.  

 

 

Figure 1  PdM test-rig. 

 

The rotor system is mounted on a flexible steel foundation that has several natural 

frequencies in the operating speed range of the rotor. Two proximity probes in each 

bearing measure the relative shaft displacements and two accelerometers on each 

bearing housing measure its vibrations. The absolute vibration of the shaft is calculated 

by adding the relative displacement measured by the proximity probes to the absolute 

bearing housing displacement, which is obtained integrating twice the acceleration 

measured by the accelerometers. One run-down test was previously performed in order 

to store a reference vibration data without unbalancing masses. 

Two known unbalancing masses are applied on both shafts of the rotor, at model nodes 

#9 (on the short shaft) and #35 (on the long shaft) as reported in Table 1.  
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Table 1.  Nodes of the measuring, balancing and unbalancing planes 

in PdM test-rig case. 

PLANES NODES EQ. MASS PHASE 

Measuring #4 , #17 , #25 , #44   

Balancing #9 , #35   

1st unbalance #9 3.6e-4 kg m -90° 

2nd unbalance #35 3.6e-4 kg m -90° 

 

The balancing planes considered are the same of the unbalances. Using the stored 

reference vibrations, the experimental additional vibrations due to the applied 

unbalancing masses, are obtained in the speed range 504-3001 rpm and are reported, for 

the sake of brevity, for the first (node #4, brg. A) and the third measuring plane 

(node #25, brg. C) in Figure 2 and Figure 3 respectively. 
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Figure 2  Experimentally measured additional vibrations at first measuring plane 

(node #4, brg. A) in presence of two known unbalances in PdM test-rig. 
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Figure 3  Experimentally measured additional vibrations at third measuring plane 

(node #25, brg. C) in presence of two known unbalances in PdM test-rig. 

 

The model matrix X  necessary for the estimation process is built by means of a finite 

element model of the rotor. The FE model, composed of 46 beam elements, as shown in 

Figure 4, has been tuned and the stiffness and damping coefficients of the bearings 

determined with accuracy, as described in [6]. The foundation has been modelled by 

means of a modal representation.  

 

brg. A brg. B brg. C brg. D

Node #4 #9 #17 #25 #35 #44

balancing
plane

balancing
plane  

Figure 4  Finite element model of the PdM rotor test-rig. 

 

Starting from experimental vibrations due to the applied unbalances in the measuring 

planes, the aim is to identify the balancing masses in terms of absolute values and 

phases placed with a fixed eccentricity respect to the rotating axis, by means of different 

robust estimators. The result of the estimation process is the identification of the masses 
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in the balancing planes that reproduce the unbalance fault. In other words, the rotor 

balancing is realized with masses of equal absolute value and with a phase rotated of 

180° respect to the estimated ones. In this way, knowing the unbalancing masses, it is 

easy to evaluate the robustness and the effectiveness of the estimators. 

The estimator behaviour is evaluated in terms of identified balancing masses, used 

weights at different rotating speed, relative residuals  (eq. (21) ) and relative errors  

(eq. (36) and (37) ), when the estimated balancing masses are applied. Also the biweight 

midcorrelation is analyzed as index of the quality of estimation. 

The results of estimation by means of different robust estimators and the known applied 

balancing masses are reported in Table 2. 

 

Table 2.  Estimated balancing masses in PdM test-rig case. 

Estimator 

Balancing Plane 1 

Node #9 

Balancing Plane 2 

Node #35 Global 

Rel. 

Error 

G  

[%] 

Rel. 

Res. 

 

Correlation 

Amp. 

[kg m] 

10-4 

Phase 

[°] 

Rel. 

Error 

1  

[%] 

Amp. 

[kg m] 

10-4 

Phase  

[°] 

Rel. 

Error 

2  

[%] 

Pearson 
Biw. 

midcorr. 

ACTUAL 3.60 -90.0  3.60 -90.0      

LS 3.82 -94.6 10.3 4.81 -99.7 39.0 28.5 0.5842 0.6472 0.4863 

MINIMAX 6.65 -89.4 84.8 2.34 -173.5 113.0 99 0.7577 0.5136 0.1426 

M-HUBER 3.52 -89.2 2.5 4.47 -91.5 24.5 17.4 0.5939 0.6472 0.4917 

LMS 2.59 -68.6 42.1 3.11 -83.8 16.8 32.1 0.6956 0.6437 0.5761 

LTS 2.86 -79.4 26.2 4.39 -90.6 22.0 24.2 0.6287 0.6423 0.4252 

S 2.93 -78.1 26.3 3.88 -83.4 14.1% 21.1 0.6441 0.6469 0.5623 

MM 3.53 -84.6 9.5 4.34 -88.5 20.8 16.2% 0.6049 0.6472 0.3070 

GM 3.58 -89.4 1.1% 4.55 -93.6 27.5 19.4 0.5912 0.6472 0.3083 

 

Similar balancing masses are obtained with M-based estimators (M-Huber, MM and 

GM). In general, considering the known values of the unbalances, it is possible to 

observe an improvement of the estimation, both for the amplitudes and the phases of all 

robust methods respect to the LS one. Regarding the phase values, the matching is very 

good for M-based estimators. Assuming the relative error index of eq. (37), the best 
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estimation (highlighted in Table 2) for the first balancing mass is given by the GM-

estimator (relative error 1 1.1% ), whereas S-estimator is the best one for the second 

mass (relative error 2 14.1% ). Considering the global relative error, the best 

estimation is given by the MM-estimator ( 16.2%G ). 

The presence of outliers is indicated by the high values of the relative residuals index  

(about 60% for all the methods) and by the low values of the correlation coefficient (a 

unitary value indicates a perfect correspondence between the estimation and the 

experimental data). The Pearson correlation coefficient is practically the same for all the 

implemented methods except for the minimax one, even if considerable differences 

appear on the estimated balancing masses among the methods. Looking only to the 

values of the correlation obtained by means of the robust biweight midcorrelation, the 

best estimations seem to be obtained by the LMS and the S estimators. All robust 

methods downweight observations at critical speeds as appears on the graph of the 

weights used by each algorithm as shown in Figure 5 and Figure 6 for the first and the 

third measuring plane respectively. 

These weights are those used in the last step of the IRLS algorithm implemented (exact 

or approximated) in almost of all proposed methods except for the LTS estimator, in 

which they correspond to the neglected observations in the trimmed sum of residuals. 

The effect of the weights to the estimation process is observable in the estimated 

response amplitudes of Figure 7 where both the experimentally measured response and 

the estimated ones are reported, for the sake of brevity only for the first measuring plane 

(node #4, brg. A). Estimated responses are obtained by means of the model applying the 

estimated balancing masses. It is possible to observe a considerable difference between 

measured and estimated responses at critical speed especially for the vertical direction 

of the measuring plane. In this case, this difference could be symptom of some 

inaccuracies of the model. In this sense each method, working on residuals, downweight 

observations where this difference is important. It is possible to observe that the critical 

speed frequency is well identified by the model, whereas the damping is lightly 

inaccurate. From this point of view, S-estimators give good estimation when the 

reference model is inaccurate, downweighting indeed observations in a wide range 

across critical speed where the mentioned difference is considerable. As expected, the 

estimated response of the minimax method is the one that well approximates the 

measured response at critical speeds. In this way this method is able to compensate the 

inaccuracy of the model at critical speed, reducing the worst residual, but wrongly 

estimating, on the contrary, the balancing mass. The responses of other robust methods 
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are very similar and differ only for the maximum amplitude of vibrations at critical 

speeds. 

0

1
Node #4 - vertical direction

GM

0

1
Node #4 - horizontal direction

GM

0

1

MM

0

1

MM

0

1

S

0

1

S

0

1

LTS

0

1

LTS

0

1

LMS

0

1

LMS

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

1

M-HUBER

Rotating speed [rpm]

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

1

M-HUBER

Rotating speed [rpm]  

Figure 5  Estimator weights in PdM test-rig case 

for the first measuring plane (node #4, brg. A). 

0

1
Node #25 - vertical direction

GM

0

1
Node #25 - horizontal direction

GM

0

1

MM

0

1

MM

0

1

S

0

1

S

0

1

LTS

0

1

LTS

0

1

LMS

0

1

LMS

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

1

M-HUBER

Rotating speed [rpm]

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
0

1

M-HUBER

Rotating speed [rpm]  

Figure 6  Estimator weights in PdM test-rig case 

for the third measuring plane (node #25, brg. C). 
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Figure 7  Experimentally measured and estimated responses (applying the estimated 

balancing masses ) for the first measuring plane (node #4), in PdM test-rig case. 

 

7 CONCLUDING REMARKS 

The application of several robust regression methods to rotor balancing has been here 

investigated. The experimental case of the PdM test-rig, is analyzed. Two known 

unbalancing masses are applied in the same place of the selected balancing planes. In 

this way the aim was to perfectly identify the balancing masses equal to those applied as 

faults. Knowing the true value of the unbalances, the robustness and the effectiveness of 

robust methods are so analyzed. In the experimental case, all high breakdown-point and 

bounded-influence methods allow the improvement of the estimation with respect to M-

estimator and classical least squares. 

In the ideal case, if it is known that the unbalances are placed in the balancing planes, 

M, LMS, MM and S estimator well identify the modulus and the phases. Furthermore if 

it is known that the system is affected by consistent data corruptions or if the associate 

model has some inaccuracies, the S, LMS and MM (in descending order) estimators 

give better results. Consistent data corruptions could come from a systematic error in 

the measured data, or due to different acquisition conditions. For instance the behaviour 

of rotating machines in warm and cold thermal conditions is different and measured 

data could be collected in a mixed way neglecting this fact. Inaccuracies or inadequacy 

of the model could be overcame and identified by these robust estimators. From another 
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point of view the residuals could be indifferently given both by error of the measured 

response or in the estimated one. 

In a real application, where it is not obviously possible to know a priori the true value of 

unbalances, the estimation process should be done with different approaches. The 

analysis of the weights used by each method could identify some critical point or zone 

in the response diagram. Afterwards the analysis of estimated response and measured 

one could indicate if the error come from measured data or from model inaccuracies or 

inadequacy.  

The information given by the biweight midcorrelation could be used as a selection rule 

of the estimate, when different estimates are available. In the considered case of the test-

rig, the biweight midcorrelation index suggests to use (in descending order) LMS, S and 

M-estimators. 

Anyhow, the use of robust estimators allows successful both unbalance identification 

and automatic selection of the weights without an expert's knowledge. 

The behaviour of the robust S, LMS and MM estimators in a particular case when the 

model is only inaccurate or only inadequate should be well investigated. 

The best estimator or a selection rule could be identified by the analysis of different 

case studies.  
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PLANES NODES EQ. MASS PHASE

Measuring #4 , #17 , #25 , #44

Balancing #9 , #35

1st unbalance #9 3.6e-4 kg m -90°

2nd unbalance #35 3.6e-4 kg m -90°

Table1



 

Estimator 

Balancing Plane 1 

Node #9 

Balancing Plane 2 

Node #35 Global 

Rel. 

Error 

G  

[%] 

Rel. 

Res. 

  

Correlation 

Amp. 

[kg m] 

10-4 

Phase 

[°] 

Rel. 

Error 

1  

[%] 

Amp. 

[kg m] 

10-4 

Phase  

[°] 

Rel. 

Error 

2  

[%] 

Pearson 
Biw. 

midcorr. 

ACTUAL 3.60 -90.0  3.60 -90.0      

LS 3.82 -94.6 10.3 4.81 -99.7 39.0 28.5 0.5842 0.6472 0.4863 

MINIMAX 6.65 -89.4 84.8 2.34 -173.5 113.0 99 0.7577 0.5136 0.1426 

M-HUBER 3.52 -89.2 2.5 4.47 -91.5 24.5 17.4 0.5939 0.6472 0.4917 

LMS 2.59 -68.6 42.1 3.11 -83.8 16.8 32.1 0.6956 0.6437 0.5761 

LTS 2.86 -79.4 26.2 4.39 -90.6 22.0 24.2 0.6287 0.6423 0.4252 

S 2.93 -78.1 26.3 3.88 -83.4 14.1% 21.1 0.6441 0.6469 0.5623 

MM 3.53 -84.6 9.5 4.34 -88.5 20.8 16.2% 0.6049 0.6472 0.3070 

GM 3.58 -89.4 1.1% 4.55 -93.6 27.5 19.4 0.5912 0.6472 0.3083 

 

 

Table2
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