19 research outputs found

    Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD). Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD.</p> <p>Methods</p> <p>The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells), and CD1a+ cells (Langerhans cells). The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD <it>versus </it>control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE), and dendritic cells extracted from mice chronically exposed to cigarette smoke.</p> <p>Results</p> <p>In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2%) exhibited enhanced survival <it>in vitro </it>when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1), and B cell lymphoma leukemia-x(L) (Bcl-xL), predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not impaired.</p> <p>Conclusions</p> <p>These data indicate that COPD is associated with increased numbers of cells bearing markers associated with Langerhans cells and mature dendritic cells, and that cigarette smoke promotes survival signals and augments survival of dendritic cells. Although CSE suppressed dendritic cell CCR7 expression, migration towards a CCR7 ligand was not diminished, suggesting that reduced CCR7-dependent migration is unlikely to be an important mechanism for dendritic cell retention in the lungs of smokers with COPD.</p

    Neutrophil Elastase-mediated proteolysis activates the antiinflammatory cytokine IL-36 Receptor antagonist

    No full text
    The interleukin-36 receptor antagonist (IL-36Ra) which regulates IL-36α, -β and -γ is linked to psoriatic inflammation, especially loss-of-function mutations in pustular psoriasis subtypes. As observed with other IL-1 superfamily proteins, the IL-36 members require N-terminal cleavage for full biological activity but the mechanisms of IL-36Ra activation remain poorly defined. Using different blood leukocyte and skin resident cell preparations, and recombinant proteins, we have identified that neutrophil elastase, but not other neutrophil derived proteases, cleaves IL-36Ra into its highly active antagonistic form. The activity of this processed form of IL-36Ra was confirmed in human primary dermal fibroblasts and keratinocytes and in skin equivalents. A significant dose dependent reduction of IL-36γ induced IL-8 and chemokine ligand 20 (CCL20) levels were detected following addition of the cleaved IL-36Ra compared to full length IL-36Ra. By activating IL-36Ra, the neutrophil derived protease can inhibit IL-36 induced chemokine production, including IL-8 and CCL20, and reduce further inflammatory cell infiltration. These findings strongly indicate neutrophil elastase to be a key enzyme in the biological function of IL-36Ra and that neutrophils can play a regulatory role in psoriatic inflammation with regard to balancing the pro-inflammatory activity of IL-36

    DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway

    No full text
    Loss-of-function DJ-1 (PARK7) mutations have been linked with a familial form of early onset Parkinson disease. Numerous studies have supported the role of DJ-1 in neuronal survival and function. Our initial studies using DJ-1-deficient neurons indicated that DJ-1 specifically protects the neurons against the damage induced by oxidative injury in multiple neuronal types and degenerative experimental paradigms, both in vitro and in vivo. However, the manner by which oxidative stress-induced death is ameliorated by DJ-1 is not completely clear. We now present data that show the involvement of DJ-1 in modulation of AKT, a major neuronal prosurvival pathway induced upon oxidative stress. We provide evidence that DJ-1 promotes AKT phosphorylation in response to oxidative stress induced by H2O2 in vitro and in vivo following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Moreover, we show that DJ-1 is necessary for normal AKT-mediated protective effects, which can be bypassed by expression of a constitutively active form of AKT. Taken together, these data suggest that DJ-1 is crucial for full activation of AKT upon oxidative injury, which serves as one explanation for the protective effects of DJ-1
    corecore