30,230 research outputs found

    Development of a three-dimensional turbulent duct flow analysis

    Get PDF
    A method for computing three-dimensional turbulent subsonic flow in curved ducts is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The derivation is coordinate invariant, and the resulting equations are expressed in terms of tensors. General tube-like coordinates were developed for a general class of geometries applicable to many internal flow problems. The coordinates are then particularized to pipes having superelliptic cross sections whose shape can vary continuously between a circle and a near rectangle. The analysis is applied to a series of relevant aerodynamic problems including transition from nearly square to round pipes and flow through a pipe with an S-shaped bend

    A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1

    Get PDF
    The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described

    Development of a three-dimensional supersonic inlet flow analysis

    Get PDF
    A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included

    Adiabatic connection at negative coupling strengths

    Get PDF
    The adiabatic connection of density functional theory (DFT) for electronic systems is generalized here to negative values of the coupling strength α\alpha (with {\em attractive} electrons). In the extreme limit α\alpha\to-\infty a simple physical solution is presented and its implications for DFT (as well as its limitations) are discussed. For two-electron systems (a case in which the present solution can be calculated exactly), we find that an interpolation between the limit α\alpha\to-\infty and the opposite limit of infinitely strong repulsion (α+\alpha\to+\infty) yields a rather accurate estimate of the second-order correlation energy E\cor\glt[\rho] for several different densities ρ\rho, without using virtual orbitals. The same procedure is also applied to the Be isoelectronic series, analyzing the effects of near-degeneracy.Comment: 9 pages, submitted to PR

    Structure maps for hcp metals from first principles calculations

    Full text link
    The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high throughput methods opens the possibility to enhance these empirical structure maps by {\it ab initio} calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase-separating. In these enhanced maps, the clusters of non-compound forming systems are much smaller than indicated by the empirical results alone.Comment: 7 pages, 4 figures, 1 tabl

    Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems

    Full text link
    We show that nano-scale variations of the order parameter in strongly-correlated systems can induce local spatial regions such as domain walls that exhibit electronic properties representative of a different, but nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg analysis of a metallic ferromagnetic system near an antiferromagnetic phase boundary. The strong spin gradients at a wall between domains of different spin orientation drive the formation of a new type of domain wall, where the central core is an insulating antiferromagnet, and connects two metallic ferromagnetic domains. We calculate the charge transport properties of this wall, and find that its resistance is large enough to account for recent experimental results in colossal magnetoresistance materials. The technological implications of this finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor revisions to reference

    Probabilistic Cross-Identification of Astronomical Sources

    Full text link
    We present a general probabilistic formalism for cross-identifying astronomical point sources in multiple observations. Our Bayesian approach, symmetric in all observations, is the foundation of a unified framework for object matching, where not only spatial information, but physical properties, such as colors, redshift and luminosity, can also be considered in a natural way. We provide a practical recipe to implement an efficient recursive algorithm to evaluate the Bayes factor over a set of catalogs with known circular errors in positions. This new methodology is crucial for studies leveraging the synergy of today's multi-wavelength observations and to enter the time-domain science of the upcoming survey telescopes.Comment: Accepted for publication in the Astrophysical Journal, 8 pages, 1 figure, emulateapj w/ apjfont

    Quantum refrigerator driven by current noise

    Full text link
    We proposed a scheme to implement a self-contained quantum refrigerator system composed of three rf-SQUID qubits, or rather, flux-biased phase qubits. The three qubits play the roles of the target, the refrigerator and the heat engine respectively. We provide different effective temperatures for the three qubits, by imposing external current noises of different strengths. The differences of effective temperatures give rise to the flow of free energy and that drives the refrigerator system to cool down the target. We also show that the efficiency of the system approaches the Carnot efficiency.Comment: 5 pages, 1 figur

    A natural orbital functional for the many-electron problem

    Get PDF
    The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. In the former approach the unknown part of the functional contains both a kinetic and a potential contribution whereas in the latter approach it contains only a potential energy and consequently has simpler scaling properties. We present an approximate, simple and parameter-free functional of the natural orbitals, based solely on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yields on average more accurate energies and charge densities than the Hartree Fock method, the local density approximation and the generalized gradient approximations
    corecore