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SUMMARY 

A method for computing three-dimensional turbulent subsonic flow in 
curved ducts has been developed. A set of tube like coordinates is given 
for a general class of geometries applicable to subsonic diffusers. The 
geometric formulation is complex and no previous treatment of this &lass 
of viscous flow problems is known to the authors. The duct centerline is 
a space curve specified by piecewise polynominals with continuous third 
derivatives. A Frenet frame is located on the centerline at each location 
that a cross section is required. The cross sections are described by 
superellipses imbedded in the Frenet frame. The duct boundaries are coor- 
dinate surfaces, greatly simplifying the boundary conditions. The resulting 
coordinates are nonorthogonal. 

An approximate set of governing equations is given for viscous flows 
having a primary flow direction. The derivation is coordinate invariant and 
the resulting equations are expressed in tensor form. These equations are 
solved by an efficient alternating direction implicit (ADI) method. This 
numerical method is found to be stable, permitting solution in difficult 
geometries using the general tensor formulation. 

Flow in the entrance region of a circular straight pipe was computed 
at a Reynolds number of 500. At an inlet Mach number of 0.01 the results 
compared very favorably with incompressible experimental data. For a pipe 
of non-circular corss section at a Reynolds number of 500, the inlet I?:ach 
number was progressively increased from 0.01 to 0.1, 0.2, and 0.3 and the 
expected effects of compressibility were observed. For the case with an 
entrance Mach number of 0.3 the calculation proceded until the flo:J choked. 
This behavior corresponds to that expected from solution of the initial 
value problem posed. 

A series of calculations was performed for flow through a duct which 
undergoes an S-shaped bend. These cases were run at a Reynolds number of 
500 and an inlet Mach number of 0.1. Four different duct cross sections 
were used: circular, elliptic with shape factor of 1.5, elliptic with shape 
factor of 0.667, and superelliptic of exponent 10.0. A highly approximate 
quasi-two-dimensional inviscid pressure formulation was used for the S-bend 
calculations. The results showed that in the first part of the bend a secon- 
dary flow pattern typical of that which is to be expected was produced. A 
problem was encountered near the end of the first bend where the secondary 
flows were seen to reverse. This problem is believed to result frcm the use 
of the quasi-two-dimensional inviscid pressure model, thus pointing out the 
need for an accurate three-dimensional inviscid pressure field. 'PJZ cases 
of turbulent flow through an S-shaped bend were computed at a Reynolds number 



of 105 and an inlet Mach number of 0.1. One case had a circular cross 
section, the other an elliptic cross section with shape factor 1.1. Flow 
in an axisymmetric diffuser and in a transition duct are additional cases 
discussed for completeness. 



INTRODUCTION 

A continuing problem in the development of the intakes for airbreathing 
propulsion systems is the design of efficient subsonic diffusers. Not only 
is the engineer faced with building an efficient diffuser, but frequently he 
must tailor the diffuser geometry to conform to certain physical constraints 
imposed by the propulsion engine and airframe. Lacking accurate generalized 
analytical design methods, the engineer must rely almost exclusively on empir- 
ical design methods based on correlations of experimental data. In the case 
of three-dimensional inlet diffusers, the cross-sectional shape of the ducting 
must vary in the axial direction, and it is frequently necessary to introduce 
offset bends (curved duct centerlines). The diffuser geometry is, therefore, 
complicated, but perhaps more important, the offset bends induce strong secon- 
dary flows which have important effects on diffuser performance. Because of 
the vast number of geometric and flow parameters, comprehensive experimental 
programs necessary to develop generalized correlations become very costly. 
Clearly, the availability of better analytical design tools can significantly 
reduce the time and cost required to arrive at an efficient diffuser design. 
A generalized subsonic diffuser analysis capable of being used as a design 
tool must account for several physical phenomena which frequently occur in 
practical diffusers. First, the analysis must be capable of treating the 
case when the wall boundary layers are turbulent and possibly of a thickness 
comparable to the dimensions of the diffuser flow passage. Secondly, the 
analysis must account for pressure gradients transverse to the direction of 
flow which can arise because of curvature of the duct centerline. Finally, 
the analysis should be capable of treating strong interaction problems; i.e., 
problems in which the viscous flow interacts with the inviscid flow. 

Because of their complexity, and particularly the interaction which 
occurs between primary and secondary flows and viscous and inviscid regions, 
three-dimensional flows in curved ducts have been extremely difficult to 
analyze. Rotational inviscid flow theory has provided insight into the 
behavior of some secondary flows (Hawthorne, Ref. l), and has now been devel- 
oped to the point where solutions to the full incompressible, rotational 
inviscid equations of motion can be computed (Stuart & Hetherington, Ref. 2). 
Techniques for computing three-dimensional laminar and turbulent boundary 
layers have also been developed. Some of these are surveyed by Nash & Pate1 
(Ref. 3). However, there are considerable difficulties associated with the 
synthesis of secondary flow analysis and boundary layer theory into a cohesive 
method of duct flow analysis. Not the least of these difficulties is the lack 
of applicability of three-dimensional boundary layer theory in corner regions, 
and the treatment of interaction between viscous and inviscid flow regions. 
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In efforts to circumvent these difficulties, Patankar & Spalding (Ref. 
4)) Caretto, Curr, & Spalding (Ref. 5), and Briley (Ref. 6) devised numerical 
methods for solving approximate governing equations which are a more or less 
natural generalization of three-dimensional boundary layer theory. In these 
studies, solutions were computed for laminar incompressible flow in straight 
ducts with rectangular cross sections. The governing equations were solved 
by integrating in a primary flow coordinate direction while retaining viscous 
stresses in both transverse coordinate directions as opposed to only one 
direction for three-dimensional boundary layer theory. 

In addition to neglecting streamwise diffusion, the pressure is divided 
into a mean pressure field representing the inviscid pressure and a pressure 
correction due to viscous effects. This treatment of the pressure gradients 
permits solution of the governing equations by forward marching integration. 
Subsequently, this general approach has been used to compute incompressible 
flow in helical tubes by Patankar, Pratap & Spalding (Refs. 7 & 8). Recently, 
Ghia, Ghia, and Studerus (Ref. 9) have employed the numerical method of Briley 
(Ref. 6) to compute flow in a "polar" duct whose cross-sections are annular 
sectors. 

Briley & McDonald (Ref. 10) have also formulated a method for computing 
three-dimensional turbulent subsonic flow in curved passages, which is also 
based on a forward marching integration after neglecting streamwise diffusion. 
Governing equations were derived for flow passages whose bounding walls lie 
in coordinate planes of an orthogonal coordinate system. The numerical method 
is an adaptation of the implicit techniques developed by Briley & McDonald 
(Ref. 11) and McDonald & Briley (Ref. 12) for application to systems of com- 
plex nonlinear parabolic and/or hyperbolic equations. In Ref. 10, some pre- 
liminary results were given for flow in a curved rectangular duct which is 
shaped like the flow passage between adjacent blades of a turbine. The pre- 
liminary calculations were made using a rather simple turbulence model re- 
quiring an a priori specified mixing length. Reference 13 represents a 
further development of the method of Briley & McDonald (Ref. 10) and an 
extension to include a more sophisticated turbulence model based on solution 
of conservation equations for turbulence kinetic energy and turbulence dissi- 
pation. The present study represents a further generalization of this method 
to encompass general coordinates and complex tube-like geometries. Although 
a derivation of the governing equations, description of the general method 
and details of the coordinate system can be found in Ref. 14, much of this 
material is repeated here in updated form for completeness. 



A series of cases was run, including the entrance region to a straight 
pipe at a Reynolds number of 500 and at inlet Mach numbers from 0.01 to 0.3. 
A variety of cross sections was used, including ellipses of shape factors 
from 1.0 to 2.0 and superellipses from exponent 2.0 to 10.0. The flow in a 
duct with an S-shaped bend was calculated at a Reynolds number of 500 and an 
inlet Mach number of 0.1. A highly approximate inviscid pressure formulation 
was used for these cases. Four different duct cross sections were used: cir- 
cular, elliptic with shape factor of 1.5, elliptic with shape factor of 0.667, 
and superelliptic exponent of 10.0. Two turbulent S bend cases were run with 
circular and elliptic (shape factor 1.1) cross sections at Reynolds number of 
105 and inlet Mach number of 0.1. An additional series of diagnostic calcu- 
lations is also included. 
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GOVERNING EQUATIONS 

Central to the present analysis is the formulation of approximate gov- 
erning equations which can be solved by forward marching integration in the 
direction of a "primary flow": The entire flow field can thereby be obtained 
by a sequence of essentially two-dimensional calculations. This feature of 
the method results in a substantial saving of computer time and storage com- 
pared to that which would be required for solution of the full Navier-Stokes 
equations. The equations are derived in a coordinate independent manner. A 
vector field that reasonably approximates the primary flow direction is chosen 
and then used as the basis for an approximation of the stress tensor. The 
time-averaged equations are written in general conservation law form, and then 
the approximate stress tensor is inserted to obtain the approximate equations. 
Note that this process depends only on the choice of a primary vector field, 
and not on the particular coordinate system used for the numerical solution. 
The primary vector field used here consists of the tangent vectors to a cer- 
tain family of coordinate curves that are roughly aligned with the flow geome- 
try. 

The governing equations are derived from the Navier-Stokes equations for 
compressible flow of a viscous, perfect gas. In conservation law form (Ref. 
15) and, in general curvilinear coordinates (yl, y2, y3), these equations are 
given by 

2 (pm + A- (pJJy)=O at a# 
(la) 

for continuity and 

dxS Js + a pv’ - a$ 1 a$ 
(pvivj +~ij) dxS Js q O 

ayi I 
(lb) 

for momentum. Constant total temperature is assumed, and thus an energy 
equation is not required. We have used (x1, x2, x3) for fixed Cartesian 
coordinates, p for density, 3 = vk & for Velocity, g = det (gij) = 

1 det (a ai1) I2 for th e metrical+determinant, 
the stre s tensor in the basis ei @Zj. 

and Tij for the components of 
In terms of the metric, the com- 

ponents of the stress tensor are given by 
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T ij = gij p + ak ij ,k + BkiPj 
k 

dV 

dYE 

where 

ij P 
‘k =K 

and 

(Pa) 

(2b) 

(2c) 

- . 
for viscosity u, inverse metric g ig 

Christoffel symbols 
, tionecker deltas 65 = 6iJ = 6.., and 

iJ 

agim agim agij -+--- 
ayj ayi dYrn 

(2d) 

From the ideal gas law and the constant total temperature assumption, the 
perfect gas relation has the form 

pzAB,.p+ABo.P*gij.Vi Vj (3) 

where ABT and ABQ are constants. In all of the above, the Einstein summation 
convention is assumed. That is, matching upper and lower indices are to be 
summed from 1 to 3. 

To account for turbulent transport processes, the governing equations 
are time-averaged in the usual manner for turbulent flows (e.g., Hinze, Ref. 
16). This process of averaging produces turbulent correlations which are 
conventionally termed Reynolds stresses. Certain components of viscous stress 
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are removed from the time-averaged equations. The process of viscous ap- 
proximation is based upon the assumption that a primary flow direction 
exists. The present approach can be regarded as a natural extension of 
three-dimensional boundary layer theory. Unlike conventional boundary layer 
theory, however, the approximate equations are to be applicable in the in- 
viscid flow region as well as the viscous region and, thus, no approximations 
are made for inviscid terms other than those to be used for the pressure 
field in subsonic flow. A detailed account of the viscous approximation is 
given in Ref. 14. 

For subsonic flow the inviscid flow region is known to be governed by 
equations which are elliptic; that is, by equations which require downstream 
boundary conditions for solution. In this circumstance, solution by forward 
marching integration is not appropriate, at least not without some sort of 
iterative procedure to satisfy the downstream boundary conditions. To cir- 
cumvent this problem for subsonic flows, it is therefore assumed that the 
pressure field appropriate for irrotational inviscid flow through the passage 
represents a given, reasonable first approximation to the actual pressure 
field. Thus, inviscid axial pressure gradients computed with appropriate 
downstream boundary conditions are VimposedW upon the flow, much as in con- 
ventional boundary layer theory, so as to permit solution by forward marching 
integration for subsonic flows. For internal flows, the inviscid pressure 
gradients are corrected for internal flow losses associated with the well 
known viscous pressure drop and blockage effects by a process which is con- 
sistent with forward marching integration. The imposition of inviscid 
pressure gradients incorporates a priori the elliptic effects associated 
with a subsonic pressure field without the necessity of solving elliptic 
equations other than for an inviscid flow. The inviscid pressure field can 
be generated from any convenient source and does not necessarily require the 
solution of compressible or even three-dimensional inviscid flow equations. 
In the S-shaped bend cases presented, the three-dimensional inviscid pressure 
field was not available, so a highly approximate method was used to provide 
the inviscid pressures. 

Turbulence Model 

The mixing length model used in this analysis employs the eddy-viscosity 
formulation for the Reynolds stresses, i.e., 

-7 PT dvi 
P V’VJ =-Rez. I 

(4) 
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Hence, this formulation still suffers from the physical shortcoming that 
there is zero Reynolds stress wherever the velocity gradient is zero. In 
addition, the eddy viscosity formulation is isotropic which may be incorrect 
in many three-dimensional and swirling flows. However, for practical cal- 
culations of turbulent internal flows there are no other available transport 
models which are as suitable or even as relatively well developed. 

The mixing length turbulence model employed in this analysis is based on 
a mixing length distribution. The mathematical form of the expression for 
the turbulent viscosity follows from Ref. 17: 

(5) 

where E is the mean flow rate of strain tensor 

'e= l/2 [(VC) +(vGIT] (6) 

The mixing length R is determined from the empirical relationship of McDonald 
& Camarata (Ref. 18) for equilibrium turbulent boundary layers which can be 
written 

b (7) = 0.09 Bb tanh [K jV (0.09 S,] - 3 (7a) 

where rSb is the local boundary layer thickness, IC is the von Karman constant, 
taken as 0.43, ; is distance from the wall, and3 is a sublayer damping factor 
defined by 

3 =P ‘/2 (y+-y’) / Q 
(7b) 

+ where P is the normal probability function, y = 
+ 

g(=/~)~/~/(u/p>, T is local 
shear stress, y = 23, and al = 8. 



I I I 1111 I III II II 11111 111111 I 

As a means of simplifying the present preliminary calculations, G is 
taken as the distance to the nearest wall, and 6b is simply a rough estimate 
of the average boundary layer thickness in the duct. The shear stress T 
appearing in y + was computed assuming a local skin friction coefficient Cf 
of about 0.0035, the value appropriate for the inlet boundary layers. Here, 
Cf is based on the local inviscid velodity UI, i.e., Cf = ~/12pU1~. 
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CURVILINEAR COORDINATE SYSTEM 

An overview of the nonorthogonal tube-like coordinate system is presented 
here. A complete description of the construction and component parts of these 
coordinates can be found in Ref. 14. 

Tube-like coordinates have been constructed to provide a natural setting 
for the study of flows within, between, or outside of a set of prescribed 
tubes. The prescribed boundary tubes become coordinate surfaces, and, as a 
result, the specification of fluid dynamic boundary conditions is greatly 
simplified. Although the equations of motion contain more terms than for a 
Cartesian system, this does not add excessively to the run time of the pro- 
gram. The basic geometry of the bounding tubes then provides the intrinsic 
constraints upon the coordinate construction. Since the primary goal is the 
computation of fluid flows within nontrivial geometries and not the develop- 
ment of coordinate systems per se, the coordinates are kept as simple as 
possible, given the desired generality. 

The first step in the construction of tube-like coordinates is to create 
a suitable family of two-dimensional surfaces which, in some sense, are 
transverse to a given centerline. If the transverse surfaces are selected 
to be two-dimensional-planes, then the construction of coordinates is greatly 
simplified. The fluid dynamic computation is only marginally different due 
to the resulting coordinate nonorthogonality. Consequently the coordinate 
system that we shall construct will have planar transverse surfaces. 

Since each planar transverse surface is a linear subspace of the real 
three-dimensional Euclidian vector space R3, any such plane can be completely 
specified by any two spanning linearly independent vectors in R3. The speci- 
fication of the planar family of transverse surfaces is then a result,of a 
construction of two vector fields along a given centerline curve in R3. The 
origin of each plane is chosen to coincide with the associated centerline 
point (Fig. 1). To assure that the planes are always indeed transverse, it 
will be assumed that they are orthogonal to the centerline at their origins. 
Tube-like surfaces are generated by loops about the planar origins which deform 
in some way as we move along the centerline curve; in general, these tube-like 
surfaces will not intersect the transverse planes orthogonally. Thus, only 
the centerline direction determines the transverse nature of the cross sec- 
tional planes. Specifically, the centerline tangent vectors form a vector 
field which, at each point, is orthogonal io the plane of the two transverse 
vectors, and thus each centerline point carries a triple of linearly inde- 
pendent vectors. By the Gram-Schmidt orghogonalization procedure, each such 
triple of vectors can be made into an orthogonal set, and hence, an ortho- 
normal set which is simply called a frame. Thus, tube-like coordinate systems 

11 



~__~~_ ~- _ _ ..-... .-..-- ._ _.. . , , , ,. . . . . 

notation, y '= 8, y2=r and y3=t for pseudo-angular, pseudo-radial, and axial 
variables. In this notation, we have thus far developed (1) a length factor, 
L=L(yl , Y2, Y3L which is a generalization of radius, (2) an angular distri- 
bution function, O=O(y' , y3) which is a generalization of an@e,_L(3) aA 
rotation+function, 
?2(Y3), V3(Y3)) 1, 

R=Q (y3), and (4) the Frenet frame, (Vl, V2, V3)= (Vl(y3), 
u on which the coordinates are built. That the length factor, 

L, and the angular distribution function, 0, give us a generalization of polar 
coordinates is obvious since polar coordinates are easily retrieved by taking 
LAY1 , y2, y3) = y2 and S(y1, y3) = yl. It is also worth noting that the 
angular dsstribution function, 0, was chosen to be independent of pseudo- 
radius, y . Although it is not immediately evident, we have removed a 
considerable amount of potential computational complexity in the process of 
obtaining metric information by limiting the number of derivatives which must 
be computed. Furthermore, there is no real loss of flexibility in the con- 
struction of angular distribution functions. Since most commonly used 
analytic descriptions of loops are, in fact, controlled by a collection of 
parameters which depend only on axial location, y3, a knowledge of only these 
parameters is often sufficient for the construction of the angular distribu- 
tion function. For example, if the loops were to consist of a family of con- 
centric homogeneous ellipses, then the major and minor axes of the outermost 
ellipse would form a collection of two such parameters. 

With the above functions and the Frenet frame, the class of tube-like 
coordinates comes directly out of the transformation 

t8a) 

which transforms curvilinear coordinates, ? = (y 1 , y2, y 3 ) into Cartesian 
coordinates '; = (x 1 , x2, x 3 ) where 

$ (Y’, y3) = @ (y’,yV + a(y3) (8b) 

At each transverse location, y3, the space curve vector, 7, translates the 
origin 40 the space curve. At a given pseudo-angle, y', a unit vector, $2 
cos$ + V3 sin@, is determined by the sum, I$ = 0 + R of the radial distribution 
function, 0, and the transverse rotation, 52. This unit vector sweeps out a 
full 360 degs in the transverse plane as y' passes through all of its values. 
Hence, we could call this a direction pointer for the transverse plane. When 
this direction pointer is scaled by the length factor, L, we obtain a point 
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are constructed from a specified centerline curve and an associated frame 
field. Now the basic question is .whether there is a canonical construction 
of tube-like coordinate systems from either a given centerline or a given 
frame field. From the theory of space curves (Ref. 191, it is well known 
that for positive curvature and specified torsion there is a local one-to-one 
correspondence between frame fields and space curves which pass through a 
given point. Thus, for nonzero curvature, the centerline space curve has a 
canonical frame field which is known as the Frenet frame. Consequently, the 
coordinates will be derived from the Frenet frame when it exists. At center- 
line points of zero curvature, the Frenet frame is degenerate and must be 
treated specially. 

Once the Frenet frame of theAspace zurve 7 has been established, the 
unit normal and binormal vectors V2 and V3 at each point of Y determine a 
transverse plane orthogonal to the unit tangent vector Gl (Fig. 2). Relative 
to any such transverse plane, these vectors are also the standard orthonormal 
basis. Consequently, we can examine the plane separately from the curve, 7, 
which will only appear as the point at the origin. In two dimensional func- 
tional terminology, the unit normal direction can be considered as the abscissa 
and the unit binormal as the ordinate; or more simply, as x and y axes, re- 
spectively. Since the tube-like coordinates are to be generated from some 
family of tubes encasing the space curve, T, a cross-sectional cut by a 
transverse plane produces within the plane a family of loops about the origin. 
We shall assume that each loop is representable by a strictly monotone radial 
function of angle. In this regard, a polar type of description is the most 
suitable. But, of course, the loops are usually more complicated than 
circles, and thus, we must replace the radius by a function L of both radial 
and angular variables r and 8. Furthermore, when noncircular loops bound a 
cross section of fluid, there are regions of varying wall curvature. In a 
numerical solution, it is desirable to put proportionately more mesh points 
in regions of higher curvature than in regions of less curvature. Conse- 
quently, an angular distribution function, 0, is a good replacement for the 
simple angular specification 0, of simple polar coordinates. The net result 
is a generalization where polar coordinates are replaced by a pseudo-radius, 
r, and pseudo-angle, 8. Since the loops generally vary from transverse 
plane to transverse plane, the pseudo-radii and angle? must also be functions 
of axial location, t, on the centerline space curve, y(t). Since the normal 
and binormal directions are usually functions only of the centerline curve, 
T(t), our loops may have symmetries that do not reflect about either of these 
Frenet directions. Since the use of known symmetries is a great simplifica- 
tion in most problems, we need an option which allows one to define axes that 
can be aligned in an optimal way. This option is easily established from the 
specification of a function, Q(t), which is a rigid rotation relative to the 
normal-binormal directions. To bring this development of tube-like coordinates 
within the framework of the preceding tensor derivations, we shall use the 
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of our transformation. Since the length factor depends on all three varia- 
bles, any set of tube-like surfaces can be obtained provided, of course, that 
loops are representable by a strictly monotone radial function of angle and 
also that no two transverse cross sections are allowed to intersect. 

In a geometric setting, the transformation is really an embedding of 
tube-like coordinate systems into three dimensional Euclidian space. An 
illustration is provided in Fig. 3. From the transformation, it is also easy 
to see that the surfaces of constant y3 are the transverse planes, the sur- 
faces of constant pseudo-angle, y', are ruled surfaces generated from the 
centerline curve, ;j, and the surfaces of constant pseudo-radius, y2, are 
just the concentric tubes about the space curve, 3. Separate illustrations 
of these various coordinate surfaces are given in Figs. ha, 4b, and kc, 

respectively. 
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METHOD OF SOLUTION 

Background 

The governing equations can be solved (after modeling the Reynolds 
stresses) following the general approach developed by McDonald & Briley (Ref. 
12) for laminar supersonic flow in rectangular jets. A detailed discussion 
of the calculation procedure is not included here, as such a discussion would 
be lengthy, and discussions of the general approach are available elsewhere 
(Briley & McDonald, Ref. 11; McDonald & Briley, Ref. 12). The method used is 
based on an implicit scheme which is potentially stable for large step sizes. 
Thus, as a practical matter, stability restrictions which limit the axial 
step size relative to the transverse mesh spacing and which become prohibitive 
for even locally refined meshes (e.g., in laminar sublayers) are not a factor 
in making the calculations. The general approach is to employ an implicit 
difference formulation and to linearize the implicit equations by expansion 
about the solution at the most recent axial location. Terms in the difference 
equations are then grouped by coordinate direction and one of the available 
alteriating-direction implicity (ADI) or splitting techniques is used to 
reduce the multidimensional difference equations to a sequence of one-dimen- 
sional equations. These linear one-dimensional difference equations can be 
written in block-tridiagonal or a closely related matrix form and solved 
efficiently and without iteration by standard block elimination techniques. 
The general solution procedure is quite flexible in matters of detail such 
as the type and order accuracy of the difference approximations and the 
particular scheme for splitting multidimensional difference approximations. 
Based on previous experience of the authors, however, it is believed that 
the consistent use of a formal linearization procedure, which incidentally 
requires the solution of coupled difference equations in most instances, is 
a major factor in realizing the potential favorable stability properties 
generally attributed to implicit difference schemes. 

Computation of Mean Pressure Drop 

To compute the mean pressure drop, the streamwise pressure gradient term 
in the momentum equations is replaced by (dpm/dx)n plus a function of two 
parameters having the form 

7r, (x,2), +,y1 (9) 
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where IT 1 and ITS are introduced as a computational device to allow an im- 
plicit splitting of the change in the pressure drop term across a step. The 
dependence of ITS on z and ITS on y is removed (to order Ax) as part of the 
solution procedure. During a step of the solution procedure, the mean 
pressure drop term is replaced by 

(dp,,Jddh + + x,z 1 - Q(X,Y 1 

during the first AD1 sweep and by 

(dp,/dx?/2 - T,” (x,z) + $*(x,y) 

(loa) 

(lob) 

during the second AD1 sweep. The variables n* and IT** are parameters computed 
as part of the implicit solution procedure so as to satisfy an integral mass 
flux condition. The parameters ~1 and 7~2 contain information concerning the 
mean pressure drop for a given step. To extract this information, it is nec- 
essary to define mean values $1 and $2, averaged in the transverse directions 
such that 

I 
22 

'ii,(x) = T, (x,z) dWz2-z,) (lb) 
zI 

?f2txx) q 
y2 

rr2 (x,y) dy/(y,- Y,) (lib) 

Yl 

It will be seen that, at the beginning of a step, G and r 
i 

are adjusted to 
have zero mean for the step about to be taken, i.e., $ = IT? = 0. After a 
step is complete, the updated mean pressure drop is obtained from the area 
averaged parameters as 

(d p&dx?+ = (dp,/dxjn + F;+ F;* (12) 
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and the unaveraged parameters are adjusted for the next step so as to have 
zero mean as follows: 

(13) 

The difference approximation across a complete step consisting of both AD1 
sweeps is obtained by adding Eqs. (10a & b) and invoking the definitions (13) 
to obtain 

(dpn,/dxJn+’ e (dp,/dxjn + ?,*+ %;* 

[ 
n+l n 

+7r, --r 1 c n+l n 
I +7T 2 -7T 2 1 

(14) 

The last two bracketed terms in Eq. (14) represent error terms of order Ax 
and have zero mean. Thus, the mean values of the parameters ~1 and ITS account 
for the change in mean pressure drop across a step, whereas the transverse 
variation of 7rl and ITS from the mean is effectively subtracted out during each 
step to within the aforementioned error terms which in practice are found to 
be quite small. The overall technique is designed to permit the implicit 
computation of mean pressure drop using an AD1 method without the necessity 
of iterating. Calculations which serve to verify the procedure are presented 
subsequently. 

Integral Mass Flux Condition 

The value of ml* and 7r2** are determined as part of the splitting process 
so as to satisfy the integral continuity condition for internal flow with no 
mass addition 

dpu/dx dy dz =o (15) 

The integral condition (15) cannot be split conveniently for use with an AD1 
method; however, the presently used split form of the continuity equation is 
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[ (pu)*- (pu)n]/Ax + t3 (pvfidy:o 

[ (pu) ** - (puf]/Ax +d+v)**/dz=O (16b) 

(16a) 

Integrating Eqs. (16) with respect to the implicit direction and invoking the 
condition of zero mass addition yields 

,flY2 [’ puhpuf] dy =o (17a) 

/ [ z2 tpu1** - (pul*] d z=o 
zI 

(17b) 

which is the split form used as auxiliary conditions to determine ITS and ~2. 
Integrating Eqs. (17) with respect to the explicit direction yields 

/I:‘/,:’ [(pu) *- (pd”] dydz q 0 

/yr2/z:2 r(pu)** -(pu,“] dzdy =o 

(18a) 

(18-b) 

and thus the integral continuity condition is satisfied across a complete 
step. 
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Solution of the Split Difference Equations 

The coupled set of linear implicit difference equations arising along 
rows of grid points during each step of the AD1 solution procedure, together 
with the prescribed boundary condition, can be written 
following matrix structure 

in a form ha.ving the 

A0 B C 
0 0 

*1 3 cl 

A2 B2 

. 

. 

0 
go El g2 

c2 

. 

. 

AN-2 

. 

. 

B C N-2 N-2 

%I-1 BN-l 

. . 

f 
0 

f 
1 

f 
2 

f 
N-2 

C f 
N-l N-l 

C 
N 

f 
N 

gN 0 

a 
0 

(61 

. 

. 

0 N-2 

@ N-l 

@N 

7l 

q 

d 
0 

5 

d2 

. 

. 

d 
N-2 

d N-l 

3 
N 

d N+l 

(19) 

For each grid point index i, $i is a column vector containing the dependent 
variables P, u, v, w. P, a single variable, is the pressure correction pl or 
p2 depending on the AD1 step. Ai, Bi, and Ci are square (4x4) matrices 
containing the implicit difference coefficients. fi is a column vector con- 
taining the implicit coefficients of P, and di is a column vector containing 
only computationally known quantities. There are N+l grid points along the 
row under consideration. Difference approximations for the four governing 
equations are associated with symbols having subscripts 1 through N-l; the 
subscripts 0 and N are associated with the boundary conditions, which may 
involve up to three grid points. Equation (19) represents 4 (N+l) linear 
equations in 4 (N+l) dependent variables plus the additional parameter var- 
iable P. Thus, one additional boundary condition or auxiliary relation is 
required to close the system, and this additional relation is presumed to be 
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available when needed. Excluding the elements Co, AN, and fi, the matrix 
structure of Eq. (19) is block tridiagonal, and direct solution by standard 
block elimination techniques (cf., Isaacson & Keller, Ref. (20) is both 
straightforward and efficient. The precise scheme used here consisted of 
Gaussian elimination for a simple tridiagonal system (sometimes called the 
Thomas algorithm) but with elements of the tridiagonal matrix treated as 
square submatrices rather than as simple coefficients. The required in- 
verses of diagonal submatrices were obtained by a Gauss-Jordan reduction. 
The additional operations necessary to include the non-block-tridiagonal 
elements Co, AN, and fi are easily incorporated provided the original block 
tridiagonal coding is carefully organized. 
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APPLICATION TO INTERNAL SUBSONIC FLOW 

The analysis of the previous sections has been applied to the flow in 
a pipe whose centerline is specified by piecewise polynomial functions with 
continuous third derivatives. Cross sections of the pipe in planes normal 
to this centerline are described by the equation of a superellipse (in local 
Cartesian coordinates): 

ba 1x1’ + lYl0 = ma (20) 

where a is the superelliptic exponent constrained to the range 25 a <-lo, 
b is the ratio of major to minor axes (sometimes called the shape factor), 
and m is the length of the minor axis. 

Throughout the remaining discussion, all variables in the governing 
equations are nondimensional, having been normalized by the following ref- 
erence quantities: distance, L,; velocity, U,; density or; temperature, Tr; 
total enthalpy, Us; pressure, prU$; viscosity, ur. Here, the subscript r 
denotes a reference quantity. After the various modifications outlined above 
are implemented, the governing equations (2a-e) can be written, after neg- 
lecting all density fluctuations, as 

a - pv ayi c i a)=0 

A( 

dYJ 1 

f3xS ppivj + @B + Tsij) - 
dyi 

Js =o 

1 

(2la) 

(21b) 

where oij is the viscous portion of the stress tensor (Eq. 2a) modified by 
the viscous approximation of Ref. 14, CY and 6 are redefined to include the 
Reynolds stresses as: 

ij tL+f+ 
‘k= Re 

(22a) 
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and 

and the pressure is 

p= $! ji [ E- + g,, 7 kTie] for j=l,2 

P-PI +p, for j = 3 

(23a) 

(23b) 

where y is the ratio of specific heats, PI is the specified inviscid pressure, 
and Pm is the mean pressure drop computed by the technique outlined above. 

Boundary and Initial Conditions 

In computing turbulent flow near solid boundaries a problem can arise 
from the juxtaposition of large and small physical length scales within very 
small physical distances. One method of solving this problem is to use a 
coordinate transformation to pack computational points near the wall to re- 
solve the sublayer. Spacing between grid points is increased as the distance 
from the wall and the length scale increase. A second method is to employ an 
analytical wall function to model the near wall region, thus avoiding solving 
the governing equation in this region (Refs. 8 and 21). Both methods are 
available within the computer code. Because of the economy of grid points, 
and the resulting reduction in computational cost, only the wall function 
method has been used to date. 

To implement the wall function boundary conditions, the first grid point 
away from a wall is positioned in a highly turbulent region of the flow. 
Since the near wall region is not resolved, the usual specification of no- 
slip conditions is no longer satisfactory. This is shown schematically in 
Fig. 5 by reference to a typical turbulent boundary layer velocity profile 
with a superimposed grid point distribution. The line segment CD represents 
the slope of the velocity profile at the first grid point. If one-sided 
differencing were used for aV/an together with the no-slip condition at the 
wall, the computed slope would be the line segment AB and substantial error 
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would occur. To circumvent this difficulty, a fictitious slip velocity 0' 
is introduced and is determined from the wall function boundary condition 
such that the finite difference value of aV/an at the first grid point is 
consistent with.the assumed analytical form for the turbulent velocity 
profile. 

To derive wall function boundary conditions, it is assumed that the 
velocity component normal to the wall is zero and that the magnitude of the 

% resultant velocity vector, u, obeys a universal. log law 

(24) 

where U, is the friction velocity U, = (Q/P) l/2 , K = 0.41 is the von Karman 
constant, and C is a constant taken as 5.0. The boundary condition is ob- 
tained by differentiating Eq. (24) with respect to n and neglecting the 
contribution due to skewing of the resultant velocity "u, yielding: 

a77 -= 
dn Ur/Kn (25) 

The wall density is specified from a knowledge of the pressure. At the 
symmetry planes of 8 = constant, symmetry conditions are used. 

Since a small tube is placed around the centerline to circumvent the 
geometric singularity there, careful handling of the boundary conditions is 
required. Since this area is distant from the walls, gradients of the fluid 
properties are expected to be small. Consequently the first derivative of 
the streamwise velocity is set to zero. The pressure gradients are all mild 
so that the second derivative of the density is also set to zero. The cross 
flows at the centerline tube must be set to insure that total mass flow is 
conserved. The transverse velocity at the centerline tube is set as a func- 
tion boundary condition whose value is equal to the average transverse velo- 
city at the previous computational plane in the neighborhood of the center- 
line. 

To obtain upstream starting conditions, the inviscid velocity distribu- 
tion in the plane at the initial axial location x = xl was scaled near the 
wall by normalized two-dimensional compressible turbulent boundary layer 
velocity profiles having a prescribed thickness, Reynolds number, and Mach 
number. The particular profile shape used consisted of a Coles (Ref. 22) 
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profile modified for compressibility as suggested by Maise and McDonald 
(Ref. 23) and made continuous through the sublayer region following the 
suggestion of Waltz (Ref. 24). With the backward difference formulation, 
starting conditions for 7 and ;;$ are not'required other than in the lin- 
earization procedure, and setting v = w= 0 at the starting plane was found 
to produce a smooth and reasonable starting process for the calculation. 
Given the velocity, the density can be computed from the inviscid pressure 
PI, here assumed constant across the initial value surface. 
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DISCUSSION OF RESULTS 

Results from computed solutions are presented for two flow problems. 
The first problem is the laminar flow in the entrance region of a straight 
pipe. This flow has been thoroughly studied both experimentally and analyt- 
ically providing a good means for testing the validity and accuracy of the 
overall calculation procedure. The second problem treated is that of flow 
through an S-shaped bend. Calculations have been performed at a series of 
Reynolds numbers, both laminar and turbulent, for several cross-sectional 
duct shapes. 

For completeness, some results from a series of diagnostic runs are 
also included in this report. These cases consist of flow in an axisym- 
metric diffuser and of flow in transition ducts whose cross sectional shape 
varies from nearly square to round. The results from these runs are not as 
yet adequate , pointing out the need for further code development addressed 
to these problems. 

The flow in the entrance region to a circular straight pipe was computed 
at a Reynolds number of 500 based on pipe radius. The initial Mach number 
was set to 0.01 to approximate the incompressible solution. The initial 
boundary layer thickness was set at 0.075 diameter. This test case is con- 
sidered important as a means for verifying large portions of the code since 
the entire nonorthogonal geometric package was used to generate coordinates 
that reduce to cylindrical coordinates for this case. The entire general 
tensor formulation of the equations was used to generate the familiar 
"parabolized" Navier-Stokes equations in the cylindrical coordinates. In 
addition the entire AD1 procedure was used to split the equations into radial 
and circumferential parts for the two part solution procedure even though 
the problem was axisymmetric. The results of this calculation were compared 
to the detailed experimental data of Reshotko (Ref. 25). Excellent agreement 
between the measured and computed velocity profiles was found over the devel- 
oping region as seen in Fig. 6. In the fully developed limit, the calcula- 
tions, measurements and classical analytical solution were virtually identical. 

This test case was repeated for a variety of cross sectional duct geom- 
etries including ellipses up to a shape factor (ratio of major to minor axis) 
of 2.0. A series of test cases was also run for a series of ducts whose cross 
sections were superellipses with exponents ranging from 2 to 10. Although no 
experimental data were found for comparison with these solutions, the results 
nevertheless appear reasonable. Figure 7 presents the centerline velocity 
distributions for the series of superelliptic ducts. 
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An additional set of straight pipe calculations was run to check the 
computation of the effects of compressibility. Using a straight pipe of 
superelliptic cross section (exponent 3.0) the initial Mach number was 
progressively increased from 0.01 (incompressible solution) to 0.1, 0.2 
and 0.3. As expected, the compressible solutions did not exhibit the 
limiting value of centerline velocity. At a given nondimensional distance 
from the start of the pipe (= 'iR) the nondimensional centerline velocity 

increased as the effects of compressibility increased as seen in Fig. 8. 
This behavior is entirely consistent with the well know effect of Mach 
number on pressure loss due to friction. 

A final test of the calculation procedure occurred in the case having 
an initial Mach number of 0.3. As the flow proceeded downstream, the 
pressure losses due to friction caused the centerline Mach number to 
increase past the sonic point into a region where the centerline flow 
became supersonic. The calculation remained stable in this region. Finally 
the velocity in the centerline region became sufficiently large that, in 
the mean, the flow encountered the sonic singularity. 
arises from the factor (l-M2)-l 

This singularity 
appearing in the one-dimensional pipe flow 

equations where M is here taken to be a mean Mach number at an axial loca- 
tion. Although this term does not appear directly in the three-dimensional 
equations being solved, the phenominological correspondence between the 
computed and the one-dimensional results strongly suggests a valid integra- 
tion of the finite difference equations. When the flow in the pipe choked 
the calculation procedure broke down immediately. This behavior corresponds 
to that expected from solution of the initial value problem posed. 

The second set of results being presented is a series of calculations 
of flow through an S-shaped bend. The baseline configuration is a circular 
pipe with an offset of 1 diameter in a length of 10 diameters shown in Fig. 
9. The first test case was laminar with a Reynolds number of 500 based on 
radius, and an inlet Mach number of 0.1. The accuracy of the flow predictions 
obtained for this sequence of calculations is limited by the present lack of 
an adequate inviscid pressure field as determined by the potential flow 
through the S-bend geometry. This was not a problem in the previous straight 
duct calculations since in these geometries the inviscid pressure is known 
to be constant. 

To demonstrate the potential of the present method, a highly approximate 
method was used to generate an inviscid pressure field. Using the radius of 
curvature of the pipe centerline at each computational plane, a two-dimensional 
inviscid free vortex solution in the plane of the pipe centerline and the 
radius of curvature was assumed. The corresponding pressure at each computa- 
tional point was computed. Although this simplified model does not produce any 
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pressure gradients normalto the plane of symmetry and does not account for 
any cross flows, it does produce a pressure higher at the outside of the bend 
than on the inside. Using the same procedure at each computational plane, 
the inviscid pressure gradients were computed from backward differences of 
these pressures. 

Using this quasi-two-dimensional pressure field the flow through the 
S-duct of Fig. 9 was computed. The results showed that in the first part of 
the bend a secondary flow pattern typical of that which is to be expected 
was produced. The low inertia fluid in the boundary layer moves from the 
high pressure at the outside of the bend along the wall toward the inside of 
the bend. The flow outside the boundary layer responds to the centrifugal 
forces caused by the turning of the duct. A series of vector plots of the 
cross flow velocities is presented in Fig. 10. A problem was encountered 
near the end of the first bend where the secondary flows were seen to reverse. 
This problem is believed to result from the use of the quasi-two-dimensional 
pressure model for this three-dimensional problem, thus pointing out the 
need for a three-dimensional inviscid pressure field. 

Several additional cases for the curved centerline in elliptic ducts of 
shape factor 0.667 and 1.5 and in a superelliptic duct of exponent 10.0 were 
run to demonstrate the geometric capability of the code. In figures 10-13, 
Station No. 5 is the end of a 1 l/4 diameter long straight section. From 
Station No. 6 through Station No. 13 the radius of curvature decreases until 
it reaches 15 diameters. 

An additional series of cases was run for turbulent flow at a Reynolds 
number of 105 and an inlet Mach number of 0.1. Using the same centerline as 
the above cases, ducts with circular and mildly elliptic (shape factor 1.1) 
cross sections were run. The results of these calculations are not available 
for publication at this time. Each of the S-shaped bend cases was run on a 
15 x 15 computational grid at each of 45 streamwise planes. Using the 
Univac 1110 computer, each case ran approximately one hour. 

Several additional calculations were performed in the course of the 
present investigation. Although these are diagnostic calculations whose 
results are not as yet adequate, several of these are included for complete- 
ness. 

The case of flow through an axisymmetric diffuser produced a problem in 
which the velocity near the centerline decreased rapidly, even at wall angles 
on the order of lo. This unrealistic deceleration was confined to the 3 or 
4 grid points near the centerline. A detailed examination of this calcula- 
tion showed that the streamwise velocity and density were changing locally 
in a compensating manner to maintain the imposed static pressure. 
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The other set of diagnostic runs is of flow in transition ducts whose 
cross section varies from nearly square to circular as shown in Fig. 14. 
The calculations were run both laminar and turbulent, and additional pipes 
of constant cross section were added both before and after the transition 
section. When these were being run, the computer program was being coupled 
to the computer graphics system developed under the direction of Bernhard An- 
derson at NASA Lewis Research Center. The lines of constant velocity at 
several cross sections produced by the computerized graphics system are shown 
in Fig. 15. Again, difficulties were apparent in the region of the center- 
line. Further investigation is needed to resolve the problem encountered 
near the centerline in the axisymmetric diffuser and transition duct calcu- 
lations. 
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RESUME 

A method for computing three-dimensional turbulent subsonic. flow in 
curved ducts has been developed. A set of tube like coordinates is given 
for a general class of geometries applicable to subsonic diffusers. The 
geometric formulation is complex and no previous treatment of this class 
of viscous flow problems is known to the authors. The duct centerline is 
a space curve specified by piecewise polynominals with continuous third 
derivatives. A Frenet frame is located on the centerline at each location 
that a cross section is required. The cross sections are described by 
superellipses imbedded in the Frenet frame. The duct boundaries are coor- 
dinate surfaces, greatly simplifying the boundary conditions. The resulting 
coordinates are nonorthogonal. 

An approximate set of governing equations is given for viscous flows 
having a primary flow direction. The derivation is coordinate invariant and 
the resulting equations are expressed in tensor form. These equations are 
solved by an efficient alternating direction implicit (ADI) method. This 
numerical method is found to be stable, permitting solution in difficult 
geometries using the general tensor formulation. 

Flow in the entrance region of a circular straight pipe was computed 
at a Reynolds number of 500. At an inlet Mach number of 0.01 the results 
compared very favorably with incompressible experimental data. For a pipe 
of non-circular corss section at a Reynolds number of 500, the inlet Mach 
number was progressively increased from 0.01 to 0.1, 0.2, and 0.3 and the 
expected effects of compressibility were observed. For the case with an 
entrance Mach number of 0.3 the calculation proceded until the flow choked. 
This behavior corresponds to that expected from solution of the initial 
value problem posed. 

A series of calculations was performed for flow through a duct which 
undergoes an S-shaped bend. These cases were run at a Reynolds number of 
500 and an inlet Mach number of 0.1. Four different duct cross sections 
were used: circular, elliptic with shape factor of 1.5, elliptic with shape 
factor of 0.667, and superelliptic of exponent 10.0. A highly approximate 
quasi-two-dimensional inviscid pressure formulation was used for the S-bend 
calculations. The results showed that in the first part of the bend a secon- 
dary flow pattern typical of that which is to be expected was produced. A 
problem was encountered near the end of the first bend where the secondary 
flows were seen to reverse. This problem is believed to result from the use 
of the quasi-two-dimensional inviscid pressure model, thus pointing out the 
need for an accurate three-dimensional inviscid pressure field. Two cases 
of turbulent flow through an S-shaped bend were computed at a Reynolds number 
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of 105 and an inlet Mach number of 0.1. One case had a circular cross 
section, the other an elliptic cross section with shape factor 1.1. Flow 
in an axisymmetric diffuser and in a transition duct are additional cases 
discussed for completeness. 
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APPENDIX 

COMPUTER CODE INPUT AND OUTPUT 

The input to the PEPSIG code is provided through three Namelist tables. 
Although the code is still in the development stage and elegant input has 
not yet been devised, the Namelist method provides a serviceable means of 
setting up the cases to be run. The three Namelists are, in order of being 
read: GEOB, LISTl, and COEFL. The numbers in parenthesis following the 
explanation of the input variable are the recommended values. 

GEOB: 

NRAD - Number of grid points in the radial direction (15) 

MQ - One less than the number of grid points in the circumferential 
direction (14) 

RTUBE - Radius of the tube put around the centerline to remove the 
geometric singularity (0.05) 

VIS(2) - Fraction of a quadrant to be computed (0.5 for half quadrant 
symmetry, 2.0 for two quadrants) 

P(l,J) - Coefficients of polynominal in x for shape factor - ratio of 
major to minor axis where: 

S.F. = P(l,l) + P(1,2) x + P(1,3) x2 + P(1,4) x3 . . . 
+ P(l,ll) xl0 

P(2,J) - Coefficients of polynominal in x for radius of major axis 

P(4,J) - Coefficients of polynominal in x for superelliptic exponent 
between 2 and 10. 

PA(3,LJ) - Coefficients of polynominal in x for traverse Cartesian com- 
ponent of centerline curve. Set to zero for straight duct. 

NOTE: The P and PA arrays determine the location of the grid points. Since 
the position vector of the grid points is differentiated three times within 
the code, the piecewise polynominals describing these locations must be con- 
tinuous to three derivatives. One must be careful of these derivatives, they 
have a great effect on the code. 
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LISTl: 

YZERO - Reference length in ft (1.0) 

RZERO - Reference density in slugs/ft3 

UZERO - Reference velocity in ft/sec 

CMACH - Reference Mach Number 

NOTE: Set either CMACH or UZERO and the other will be computed within the 
code. 

IRSTIN - The station number to be read in for restart 

If IRSTIN = 0, not a restart case 

IRSTOT - The interval for saving restart information 

If IRSTOT = 0, no restart information saved 

JRSTIN - Logical file name from which restart information is to be read 

JRSTOT - Logical file name onto which restart information is to be 
written 

NFILE - The sequence number in JRSTIN of the desired restart infor- 
mation 

NSAVED - The number of restart stations saved on JRSTOT; must be 
initialized in inputs to the number of stations already 
written (and to be preserved) on JRSTOT. Nominally initialized 
NSAVED = 0. 

NOTE: By setting JRSTOT = JRSTIN and NFILE = NSAVED, one file can be used 
for both read and write information, without destroying the already saved 
information. 

YSLOT(2) - Initial nondimensionalized boundary layer thickness 

NS - Number of the last marching step to be taken 

NFIRST - Number of the first marching step whose geometry is to be 
specified (usually 1) 

X(NFIRST) - Nondimensionalized location of first two marching steps 
X(NFIRST + 1) 
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Al? 

REY 

KIXJRB 

IPLOT 

ICOEF(I,J) 

ICOEF(1,20) 

COEFL: 

IGDMP 

- Ratio of consecutive step sizes in the marching direction 

x(i) = x(i-1) + AP + [x(i-1) -x(i-2)l 

- Reynolds number based on UZERO and YZERO 

- 0 Laminar with no slip boundary conditions 
- 1 Turbulent with wall function boundary conditions 

- 1 Write plot file (Logical Unit 8) 
- 0 No plot file 

- Controls dump of terms being loaded into the block tri- 
diagonal matrix 

I=1 J=l,lO Momentum Eqs. 
I=2 J=1,3 Continuity Eq. 

- 1 Dumps the stored geometric data at start of equation 
writing subroutine coefg. 

- 2 Dumps equations loaded into matrix inverter 
- 0 No dump 

There are three types of output generated by the PEPSIG code. First is 
the restart information that is written on a user specified data file. This 
information is used to permit a problem to be run as a series of short com- 
puter runs instead of running it all at once. The restart is exact in that 
cases run using the restart capability yield exactly the same results as 
those run all the way through without using the restart. 

The second type of output is the printed output delivered on paper or 
microfiche. This output contains tables of parameters of interest at each 
calculation plane. A sample printed output has been anotated to explain its 
salient features and is included below. 

In three dimensional flow problems the flow characteristics can become 
very complicated. To make the results of this calculation procedure readily 
available to the user, some visualization techniques were required. Ber- 
nhard Anderson of NASA Lewis Research Center has headed up the development 
of a family of advanced graphics packages that can be readily coupled to two 
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and three dimensional fluid dynami.cs computer codes. The computer code 
developed in this investigation has been coupled into this NASA graphics 
system to automatically provide Calcomp, 16 mm film strip, and even movies 
of the results. This is the third form of output. These graphics capa- 
bilities can be used during code development to help highlight problem 
areas. The graphics are expecially useful in presenting the results of 
calculations to help the user understand how the features of his duct 
design affect the flow of gas within the duct. 
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~--qjg-A~;u 
.99716+"0 
.51752*‘10 

--;552w*uu- 
.6LoO25”JU 
.b5695+‘lU 

mw;i~~ 

.65695*(1U 
_fbU02Z+?0 

. !T57iJ8 4 ‘IU- 

.51752+10 

.4971b+qU 

.4904e*no 

.54l188*00 
l 5bG!7+00 

-xu228~ou- 

it:%:88 
l 77319*00 

-.7Pb43+00 
.77319+00 
.717bQ*OU 

-wfI~--~ 

.54188*00 
..53952*00 

ig~m~g- 
.76533+00 
.a3903* 0 

1 .90467* 0 
.93214~00 
.9UL)b7+00 
.83903*llfl 
.76533+00 

-;mz7u~o~- 
.b5777+00 
l b3131*00 

..62262’00. 

.67603’0U 
ggg; ._ 

.82035*00 

.89973’00 

.82035+UU 
-.7 5Zv1~7lU ..’ 
.7oY53*00 
.67603+OU 
.666bl*OU 

___. -- .-.__ ..-. .__._ _--- . .._A ___. - . ..-____ _- .._---. 

- -- 

_ ._ __ ___-.-.-._ .____ --__- ..-..-1----. 

-_-----_- _..__ -- --- 
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J 

Second Local _ - ------w- W6E---e 
Polar Coordinate 

LEVEL 1 l **** THETA l **** 

1ao.00 
---x7x@ 

t 

$:$ 

15:71 
102.86 

‘79’PtI 
--K& 

3e:57 

.-.- wi 

-180. 0 
4 

‘E* 2: -- 
f 41:43 

i 
20.57 
15.71 -- 

lllZ.86 

WI1 
-&--- 

3e:57 

--..---- .-__..______- _______~____ __.-.__-- .--.--.-__- 

60.79 by.29 
51.93 51.43 _. -.. 

‘IS’K 1 5U:29 

i :k::--‘ 
115:71 
102.86 

9G.00 
77.lQ 
64.29 
51.QJ 

---- - ..-’ ..-... .._--.. .-_-- .- . 
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co 

.-+EPS’IG - CURVED- CEWERti-NF -TEST-CASf-- R*tm-tf!Vt -’ .r --‘- 
__ ........ _. .. ....... ._ _ .- -- .... ..- - w---+---+2- 

.’ 

I-TH STATION .00r00t0 
LOCATION OF CENTERLINE I .OOOOOOOO oollo~~oo 

KOi)Ri)= 1 
, x .o 000000 I ox= .oooooooo 

BY0 : o* IFRCT = 1 ITCNT 5 2 VELDCIlV BOUNDARY CONDITIONS b 
-..LDUF~.L ___. rr!pcH_.=-.1.. JFRCT = 1 DENSITY BOUNDARY CONOIfIONS t 

vFIrmrn vF~nmmVOTiTr6xn- C~6RDINA1ES 
-:I-&------. 

--. 

Initial Values of __._.... - .-_,,- __._ -_. . . ..__. 

LEVEL 1 *++** “-vE(stre-ise velocity -- 
__-- .~ _... ..-..-- -... ____.__. ..___ - _..__,__ __ ..__ --.--.-.- ___-. - -.- 

.-.:- _A._. _ : zr.‘. .- .“3?0 ^ 7.. *t29+00 -- 9 ..- 5’ .‘-. 6 7 -- ---.-- B-- .- ---- --‘-- 9 -----.. --lu 
z .7143-01 

. 
..?1r3+00 .2857+00 .3571+no .4286’00 .5000*00 .5714*00 .bCZP*OO 

.97q22*00 

.71u29+oPJ 

.6’42Qb+CO 

.57 14 3+CY 

.5COCC~Ol? 

.Q285 7*00 

.357iq+or: 
--.2R57 I+O@ 

.21’129+01; 

.142Rb*r?G 

.11429-D1 

.iYOO': 

.Tl 
.71u3*00 

.n15aQ+oo 
.-.!gf’lFj;;;f _ 

.85217+1D 

.R&lltJLI*Oo 

.92642*‘iU 

.Vb523+‘S 

.979Y 1+oil 

.9b52:*OJ 
..92bL(i+SU 

.QQ434*?0 

.85217+CJ 

.BJlZl’!‘J 

.n1957+3.3 

.A15QF+:5 

-’ 12’ 
.7u57*co 

.66779*00 

--:m!:;g .. 
.7Cb31+00 
.74L83+00 
,79587*00 
.s5533+00 
.66’416+?rJ 
.85533*00 
.79587+Co 
;7’4283+CF 
.7qb31+CG 
.ba375*00 
.67161*00 
.66779*C!i 

..47869+‘10 
.4t388lJ~OU-” 
.5”7QQ+Co 
.53976+ o 

8 .5AQ75* 0 
.64PlC’YJ 
.bA152+‘)U 
.5~9lC+OLl 
.5Qe75*00 
.53976*x- 
.5c7QQ*?o 
.46660*3U 
.(171169+00 
.47552+r;O 

14 
.926b+DO 

.24797+00 

.2’+976+00 
.-;25553+00 - 
.26653+UD 
.26521+00 
.311(80+oO 

35354 it.JC 
:37s59+urJ 
.353lJ~+UO 
.31”Qo*UO 
.1QSZI‘UIT 
.26653*0’J 
.25553+Un 
.2’497b’L;D 
.;47974c7 

_ 
l 01 

-7 

-_. ..- _.-_._ .--.. - 

_^___._.__ --.- I- .--- 
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,’ 

Initial Values of 
LEVEL 1 *++** V-VEL l **** 

_ ___ .__ .----. .-.- - -.... .___. . _. _. ---- --.. -___ ._ _. __. Circmferential Velocity --_- _--.-. 

rz= 1 2 
.1t29+m .2L7+00 .3L.lo 

1 ‘. - .. 8 ..-- -.. 9 -.- ~.-- - -xu- 
7 = . nocc .7193-01 .zr~s+no .42.81+00 .5000*00 .5714*00 .61)29+00 

.1o:m1 

.9:a57+00 

.95714+ti’: 

.7857 1riJ7 

. 71423rCl 

.642Rb+@II 

.571q 3*n’? 

.5rJ0cC+Cu’ 

.42857+00 

.J57lll+OP 

.zFJ57 1+00 

.21429+00 

.1~2ah*US 

.71’129-?.I 

.:lnoOL’ 

-TocllYon .- 
.uocon 
.CIJcUU 
.IJ@COLl 

-;ucuurr 
:88889 
.UO~OO 
.rJ?COU 
.Jooco 
.uoooo 

-- ..oouoo 
mm;; --- 

:888X 8 
:5K% 
.ooooo 

_ . --_-.. -. .-_. ._.... - . 

-. . _ .--.-.-_ _.-~- --._-- ___ -.. 

1 l **** Y-VEL l **** 



,, .-PfPSI6 eWtVED CfNfERLif+-TiCST ChfF RWPWtEVt---- .-. ._.---. ._ ._. -. - . -..---~*ffd~~------.p+.-. 

.85719+31 

i 
.57143+00 
,53ooc*oo 

.21929’30 
----)'- ;1'4286+OC 

.71429-Cl 
1 .coIloo 

1 . &I 3-01 .&29+00 .2:LI3*00 .28557'00 .3hoo 
7 8 9 

.nlloo .4286+00 .5000*00 .5715*00 .&9*00 

--. 

: mx- 
.ooocc 
.?UOtirl 

:8t;8:;~ 
. ccl000 

-_- .OCOOO 

: KG6 - 
.OUOOP 

:%8:: 
.CllJIl0r 
. oooon 

-WU”o; 
.oooco 
;i$$ 
.oouoo ..ouIJoo ._ 

!~%I~~ 
.a0 00 .oooflo .ooooo 

_, .__ .._.. .-.- .-_. - ..-. A.. .-.-~~ _ .___-.. ..- -__i- 

_.- . fZ’ IQ-.- 
.ii86+00 

.ooouo 
~00000 

:$g; -- 
.00000 

w3~ .- 

.ooooo 

.0(3000 
yams-- 

l 00000 
.uouoo 
.o!lono -- 

Initial Values of 
Radial Velocity 

,.--- - .- . .._. --.---^-_ . . ._ 



/ 1-TH STATION 
LOCATION OF CENTERLINE ( .OOOOOOOO 

5: ,ooooouoo 
.oozlooooo 

“O&?o= 1 
, .oooooooo I ox:: .ooaooooo 

BY0 = 0. IFACT = 1 IlCNT = 2 
IDUCT = 1 _-. ----_- ..- &HPCH = 1 NOMACH = 0 

I 

..-. _. -.A - --- _.,_ ..__._. - ._._ ..---.. -.. .-- .-. ------ Initial Values of _-.~ ________ ____- 
LEVEL 1 l **** RHO l **** 

.10~00+01 -;vZE57xKr 

.8571Y+r!~ 

.78571*00 

.71429+00 

.LU;Pb+‘l@ 

:2;:“,;::; 
.L)t857+oO 

-x3571uaal 
.2857 1WlO 
.211(29+00 
.142eb+00 
mg’c-0 1 

.lOCOU*Dl 
.etln~oo+ol 

.AnOnOiol 

.l~lJll0+ 1 
8 .13l!oo* 1 

.13i00+01 
“‘i 1’1Loo+ol’ 

.l~of~J*Dl 

.lODflO*D 

.IflL03+0 1 

.1'1;qo+o1 

.1nL;oil+ol 

- 

-. 

.999bWOO 

-mtS:i8--~ 

-.___ -- .._. _- .- _- . .._._. .- .__.__. -____ __..-- 

12: . __ . 
7 f ir’ .lOODC+Ol 

.92e57+‘3? 
-g -:B,‘B;yl-“l:gj 

1: 
.71429*0P 
.69286+0~ 

;. .571L(:+oo 
.5cocc+nu 

4 

.u2857+ilrr 
.35719'0@ 
.2P 57 l+J’ -- 

v--~.i!1929~0~ 

: 
.111286+0Il 
.714:9-01 

.1 .I;I3lJCl 

.99933*0n 

.999su+r0 

.9993P,?J 
7Pv9us+rJO - 

,999Sb’pd 
:;;;;i*. c 

470 
.9999:+m 
.9998b+qJ 
.9997:t'?ll 
.9995b+G,J 
.999rr*no 
.9993E+OO 
l 9993s+lJ 
.9993 3+15 

.,&; o b 

.99890*00 

.99&94+@0 

.999m+rm. 

.99911+00 

.99v27*00 

.99946+00 

.99956*00 

.99)Ub*Ot 

.V9977~00 

.99911*00 

.99930’00 

.99E94*00 

.99a90+00 

.C9B89+00 

13 
.8571~00 

.99846+'10 

.99846’00 

:XBZ:RE 
.99859+no 
.99070*00 
.998.55*~10 
.99R9 3’15 
.99985+nc 
.99970*‘10 
.99859+CJO 
.99852400 
.999VR+lD 
.99946+00 
.998L1b*OU 

14 
~.VZE6iIl~ 

.99a13+011 

.99tt13+uo 

Gm$~~~ 

l 99820+00 
99825*UO 

:99629'oc 
.99H25+00 
.999Zd*UO 
.99817+00 

-.Y9815~00- 
.99814+00 
.99813+00 
.99813+00 

.998Ul+O~ 

:8818138 -- 
.99Rfll+Oo 

%;x;i~~ 

.998rJl'OLI 

.998ul+Oti 

.9980 'GO 
t .VPBil l oo .- 

.998nl*cL 

.998llI+OO 

.998ul+nU 

. -_-.--... _ .----. 

.--- _-__ -..---__-----. 
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I-TH STATION , 5~ .OO@OOOOD 
LOCATION OF CENTERLINE I .OOODOODO .ODOOODDD 

noho: 1 
t .OOODOOOO ) DX= .oooooooo 

BY0 - 0. IFRCT = 1 ITCNT = 2 
-- ~-_ ~_. .^ AJNCT .r_l---l MACH G_L-e.evYO~ACH-=-0.--~--- ._-_ - -. 

_- 

__._, _-- __.. Initial Values of -.~_---..-~ .-__ _~-_.. . 
LEVEL 1 **+** PRESS l **** Pressure 

____.___ . - _... - _ __-. -___-_---_-___-. 

mfii8 
.571L13*oc 
.5nocc+rJo 

-:%:4':88 - 
.2857 l*OO 
.21’I29+00 

-~1428b+D~ 
.7 429-31 
. L' d a 'I 0 

:f#W 
.71459+!!2 
.71454*02 
.71454+-'2 
.71454+12 
.71454+-Z 
.71454+02 

Wi~f- 

.71u54+12 

.7145'1+12 

.i1115U’Gi 

.7145’1+72 

- 

.- 

.7145’(+rz 

.7145U’ 2 c 

.71454+W 

.71454+02 

.71454+02 

?f#::@- 
.71454+02 

.7145u+ 2 
a 

.71454+ 2 
.71454+ 2 8 .71454+ 2 
.71uf4i'2 .71454+UZ 
.71454+02 .7145'++J2 
.71454+02 .71454+02 

.714 4.02 
2 ,714 4+02 

tlli54iCi 
:71454+02 

.7145~+02 

.71454+02 

.71454+02 

.71454+02 

.71454+02 

--M~l]g 

.71454+02 

.71454+02 
--.7145~+02 

.71'454+02 

.71454+02 

.71454+02 

.71454+02 

:XKSt 

--~i#$Eiij 

.71454+ 2 
,.71454+ 2 8 
.71454+U2 
.7145r+02 

___- .-_-- -_--.-._-.-__- .--__. _______---_-- ._._ --. ..-. - .--- ---- 

-. fZ’- 
.1000S+01 
.92857+00 
.85714'CG 

-77E57I+[lrJ 
.71429*.70 
.b42”.b+OO 

.50 4 UC+07 

.57 43.00 

.4:.357+OD 

.35714+00 
.e22e57i+~~ 

.zl42T*Jo 
.lU286+00 
Jill;;-0 1 

.71454+?2 
.71454+!72 
;71454+OT--. 
.7145U+72 
.711159+$2 

;71454+j2 
.71454+OZ 

::::?:+;g 
,714;4:12 

-. %Ti00 
.71454+02 
.71454+02 
.71454+ 2 

8 .;71454+ i!-- 
+71954+02 
.71454+02 
.71‘154+02 
.71454+!J2 
.71"54+L:2 
.71451r+oz 
.7145L)+U2 
.71454ioz-~- 
.71454+02 
.71't54+02 
+71454+flt 

.71454+02 

.71454+02 
-;71959*n7- 

.7 i 454.02 

.7 454.02 

.71454+02 

.71454+rJ2 

.71454+02 

.71454+02 
?71454+'12 
.7 459suz- 
.7 1 454.02 
.71454+Il2 
.71454+02 

.. -&x* IJ 

.71454+0 9 

.7 454.02 
1 .7 454.02 

"~~~m~~~- 

:J 1454.lJ2 
.71454+02 
.71454+G7 
.71454+02 
.71454+02 
..71454+b2 

:J]Z::t",Z,- 
.71454+02 
.71‘154+U2. 

.I 454.02 
i .7 454.02 

<7145Q+DI 
.7145P+02 
.71454+02 
,71‘I54+02 
.714511+02 
.71454+02 
.71454+02 
.7 45u+n2 

1 -;7 454*02 
+7155~+02 
.71454+02 
.71454+02 

I 
._. 

-.- 

_ _ - _. . . __ ..--. ..- -. _ __ 

-----T--- ..‘-- 

_ _ _. - 

-.-_. _ _.- __--.-- _ ~__.___. 

..-- 
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Initial Values of 
LEVEL 1 l **** CP/2 *+*+* Pressure Coefficient 

--___---- ~-- ----..-- --.-- 

.64634-M 

.b463’I-06 _-.._ ._ 

.6463U-06 .64634-06 
.5OOOG+OO ,611634-06 .6463’4-06 .64634-06 .6463U-06 .6&639-06 .6’4634-06 .61)631)-06 .61)63Y- 6 
.92857+00 

-i-- 
.6U63U-06 .64634-06 .646311-06 .64634-06 .6463U-U6 .69634-06 .611634-06 .Wb34- 6 8 :,b,‘~K& ::18?31’--1% -, 013q’06-.-- .--- - 

: 

.357TS~O~634~~~7463Y’~06--.6~~3~~6--~~~~~~~O~---~~~~~~~U~-~6~b3~~06-~-;b963~-06~~6~~‘06~~ “I, 3 

.28571*00 .64bJr-06 :$M’,-8” .64634-‘J6 
.21’129*00 .bQb3’I-“6 

3 
.611634-06 8 .6463U- b 8 

.64634-06 
.6463U- 6 .69634-06 :%:X -:%%!g ::18?3:% 33;!!:8,fj 

-j-:~t981RP....:~;‘6”::ras”. $4y$& :$Jg$!!;; .64634 II6 :6”:6”:$1;; :;;;$4’18g :JI~::I$ -.30734~#b ::30134IOb 
.646 ‘1~06 

. . _. 

. .OOOO@ .64639-06 .64634-06 .64631(-06 .6463r(-06 .6463U-C6 .64634-06 .64634-06 
4dJ;:: -ot .- 30739 Ob- q -.S07Vlz06 

- -.30739-06 -.30734-06 

_--~-~-_-- -..__---. ___ _.._ -- -... -_ - _. ..-. _ ---..___ -..--..- .--- - 

.--- 42 =z. -_ 

:: 
.1ikJ0C+01 
.9285?+0r 

14 
;szB6iu 

30734-06 
3C734-06 
30734-U6 
3C734LOb 
3lj734-L’6 

:w:: 
3n73413h 

:“o:::-it 
J”734106 

:g:::g 
30731(-06 
3!1734-Oh 

-.3b734-06 
.:.J073~-G6 

$g::i]k-- 

-.3073u-06 
-.3t73u- 
-.vJ734-9: 
-.3U73U-‘Jf, 
-. 3u734-01 
:.JU730-06 
-.3 34.=Ub 

F -.3 734-06 
-.30734-66 
-.3073U-II6 

--.-. -- 

__ __ - -- _.__ __ .._. -.. __. 

-_- _-. 

--. .---. -- . .._ ..--.. .__ _-_. ____ __ .._.. . . . _.. ..-. 
LEVEL 1 l **** MACH l **** 



‘5 f G----CURVEE 

.1o;oc+o1 
,97BFT+m- 

.85 11(*00 
3 .78 71+00 

..711129+0” 
.642Bb+U@ 
.57143+30 
.5nonG+00 
.42857+00 

-.357~rurg-- -- 
..28571+0~ P 
.21429+00 
.14286+00 

-Rmevy- . . _ ..-_ 

.1!29+00 .2h3+00 
6 

.3571+00 

-- .-W,E--*---- ..-- ----id -. .-_ . _ 

8 9 10 
.5000*00 .5?1~*00 .6’(29*00 

- 

12= 
_---- T = 

:: .lbllnt+ol 
.92857+@~J 

.642.36+@’ 

.571Q3+!l(1 
8 .e,CJUCC~O” 

6’ 
.42e57+0@ 
.35714+OG 

; ~ze571+00 
.ZS42~~ULr 

Initial Values of ~__ --.~.._ 
Mach Number 

--;-‘-- -_.... .- 

.58037-31 .31‘452-01 .oococ 

.64872-01 .35273-01 .cGooo 

.68115-01 .37427-u1 .OLOD~’ 
_ _ _ 

.6Q872-31 .35273-01 

.5883?-01 .31452-01 :6%88 
..fj;;;;<# - :~“o~“o~. ..- - ..-_. -_ - .._^ -.- . .._____ ____--_____.__.--.-_ ..--. 

.25530-01 
.‘ITR32-01 .24953-Uf - 

, .97516-01 
: ~:E 

.2‘%773-01 . OooGn - - __ -_ .__.. _ ._ 

INTEGRATED PROPERTIES AT STATION 2 Check on Mass Conservation 
-TV’ I- --,3r-m ; __- - ‘ms Timr-- - .3wT9=~lL~n. 

___ ..__. _ .-. 

LOCIL TO ORIGINIL AREA RllIO 
LOCIL TO ORIGINAL MASS FLUX RATIO .-_ _. -. -._ -..--_ . ..----.-.-I--.. .._... -1. 



J Results of 1st Marching Step 
RAtw+tEVI - -----fPcHa----)5-~ -\ 

2-IH STATION , S= .DOC'00000 
LOCdlION OF CENTERLINE 4 .f'OOOOOOO .ooonFooo 

KObRO- 1 
, .40000000*00) ox - .40000000*00 

Byo - 9' 
IFRCT = 1 

-w c T .--ii--.- -.__ IMACH-=.-I 

_-_ _ ___, -..-_. _---A.-__- ----__-_ --. . . 

LEVEL 1 +*+** RAOIlJS l **** 

, * ___.--- .----- .___- -- --___- - 

s -“K-. 
: 

-- i- 

.50000-a 
;Jouor~ 04 

.5tiooo-')l 

.50000-a1 

.5GOOO-01 

.5otilJr-a1 

.550110-a1 
pXlKl~~~ 

--XKiiJGh 

::E838-“o: 
:s'o"EF:4j 
.5ooou-rll 

.9404.9-01 
-YY471Fm- 

.96752-01 

. lOUZl*O 
~~.lr50J+O 8 

.11;69+0u 

.11579*00 

.11786+00 
-.:F:;${; 

.10503*00 

.10521+00 

,.22619+00 
.ZzllKT~UU-- 

..3129P+OO 
.2Vt78+00' 

.228@7*CC 

.226lQ*OD 

.3534T+UO 

.37872*00 

.3.3929+00 

.3787.?*0 
~-r35347+0 8 

.32513+00 

.30104*00 
am;;+xo 

.2702@:0 8 

--- --.___- -. ~- __- __..- --..--- ._. .__ 

.1~000~01 

.92857*0(! 

.85719'5r! 
i7a571rou 
.71U29'00 
.64286*00 

::'o&g8; 
.42657+00 
.35714*00 
.2a57 l+on 

-yPlg~ 

:;;;p 

11' 
.Ass~clu 

.U9048+00 

.49716+10 
..51752+'30 

:7o"D'og:g- 
.65695+qU 
.7L.742+'30 
.72057+1J 
.7 7'(11+cu 
.6 695+30 k 
.6lJ025+1U 

';55208+1)0 
.51757+10 
.49716.+70 
.49rUa+oo 

12 
.7AST~0rl 

.53452+00 

:WX!E. 
i%l!22E400- 
.6’r52a+oO 
.7176’4+00 
.77319+00 
.79643*"0 
.77319+00 
.7176'++00 
.6552a’no 

G60218+00 
.56427*00 
.54laa+no 
.53452+00 

13 

.5iEF+iP- 

:2!S438 
.7l5299*cl-- 
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LEVEL 1 ,*+*+ RADIUS l **** 

.85714+OP 

.7P571'0cl 

.71020+3n 

.6428b';g 

.5714 3+00 

.5n0CO*0r 

.94048-O 
7q 71b-’ u#- 

.96752-01 

.10u21*r) 
11'1503+0 8 
.llL69*Dfl 
.11574+fJO 
.11786+0D 
.1157u+ou 
i11m9*ur-- 
.10503*00 
.lC,2l’DO 
.9b752-01 
i94716-111 
.94W8-01 

:I:29rDD 

~13.310+ 0 
$ .13m o- 

.1u350+70 

.15092+00 

.16005+00 

'i~~;affj~ 

:Fw:88 
.16005+‘)0 
.15v+2*r10 
.1u350+00 

:!::“,I%88 

i$bl~ _ 

.23701+OC 

.25083+00 

.27OlO+tiL1 

;38TI*CJQ 

.2702'I+OO 
-7tns8*lm .- 

.28376+00 

.3ol@u*co 

;Jraii;;;i 

.37fJ72*00 
;35347~00 -- 

,:MMl 
.2837b*DO 

-.27358+00 
.2702’4+00 

.- _-__ _ -_ 

.-. 

-_ _. ._ _ . 

--. -_-.. - -_~~_-- - .-__ I-. 

.l~“I!c*ol 
:;:;:;Nj 

-.78571eO 
.711129+')n 
.64286+DC 
.5719 3+31 
.s?i-tr!c*qr 
.L12857+',11 
.J5719'00 
.LR571+0~ 
i21'429+!30 
.i4286rlP 
.7!429-01 
.il'fltil: 

.Ltli- 
.U90’48*$3 
.'I9716*?0 
.51752'qU 
.55?08+Do- 
.bUDZS+rlU 
.65695+10 
.7lJ7'14+05 
.72fl57+r3 
.7U744+qJ 
.65695+ 3 

4 .600,!5+ 0 
.552~8+?0-- 
.51752~111 
.49716+73 
.1(704R+1u 

12 
m.7857*Ou 

.53r52+00 

.54lRii+UD 

.56427+llO 
-;brlZZE*OO--- 

.65528*1)0 

.717b”+OC 

.77319+0 

.70643,‘1 8 

.77319+110 

.717b’++rJO 

.65528*OU 
~bC'228+UU - 
.5h427rOU 
*541RB+UO 
.53452+00 

13 
.957l'ciO 

.57857*0u 

:X5+; l 8 
;65?4Y~uD 
.71030+00 
.77034*00 
.Rse93+0 
.Rb429+7 I! 
.9JR93+GL: 
.77834+0U 
.7lC)3C'OU 
.65299+00 
.61102+10 
.58660*00 
.57957'00 

19 
;9286+n 

.62262+00 

:hw:88 
-*7027u~QD 
.76533' 0 
. 8 a3903+ 0 
.90467*0n 
.93214+oiY 
.90467+Ufl 
.83903*Uo 
.76533+UD 
;70270+00 
.65777+UO 
.63131+00 
.62262+UU 

rl 
. 
. 
. _.- 
. 

. 

. 

;E~O+tl 
66667+0U 

f/&F!:88 .___ 
75291*00 
132035+OC 
!39973+rlLi 
97fl112eBb 
loorl"+01 

. .-. . 



WI 
cn 

LEVEL 1 **p* THETA l **** 

___-.-.-__ . . .~- .-.-_ . --.^-- -_ - ---_.- .-._--..--..- - --.--...- .- 

.10~00+01 -.37a57mn- 

.85714'03 

.7857 1+or 

.71429+05 

.6stPb‘o” 

.STlS 3+00 
.5oaoc+co 
.42857+00 

-;35719*mJ 
.2857 l’n’l 
.21v29+Jo 
.lQzB6+oc 
.71429-31 
.L?OrlC 

18 0.00 
-fz;T;g-- 

19 1:43 

::z: 
102h6 

1 
5.11 
2.B6 

.UO 

102.86 

25.71 

“:E 

- .-__-__. -_-- .----- .I-- -.-__.-..---__. ..--.-..-- .-. -.. _ ._ --. --- 

-. y=_ 
:: :3?A57+0? cIIoc+o1 

-13 .85714+0r 
iI r i7P57 1-00 -- 

.71~29”30 

‘I 
.64286+00 
.57193+0’) 

a .5!70rJ’+Ot 

6’ 
.LI285 7rui 
.35719*nG 

5 .2A571+u~! 

: .71429+31 
.L;?O@C 

11 12 13 
.71~3+00 .7857*m .a571+m -. 

154.29 

--7:3*3 
115:71 
lbJ2.96 

9D.CO 

:2? E 
1511:29 

i 

y: - 

15: 71 
02.86 

:x40 
15LI:29 
;;t .g- 

115:71 
132.86 

9r.3rl 
77.14 
6” .L9 

-. 

102.a6 

;7"*re 
------&29 

__---._--._- ..-- -. -.-. .- 



l3-TH STATION , SS 
LOCATION OF CENTERLINE ‘t .OOOOOOOO 

.9ODl6805* 1 
.68362240-01, 

KO&?Dz 1 
.‘I00 oOoO+ol) 8 ox = .50000000*00 

BUD = 0. VELOC ITV BOUNDARY CONDITIONS 
.~!WC_!dA&..-~.. DENSITY BOUNO4RY CONDITIONS z 

U-TK-FDHPIJT~TIUAIIl COORDINATES -- 
I 

LEVEL I l **** U-VEL !+t++* 
- .__- --..^-_c_ -------___ -.- 

-_.-. Tz--- -...-.. 
. o&-o - -- .. 

.7LJ-01‘ 
- -v- 

. l;T29+00 

_ . 
5 

- 
6 

,-. _ .___ - .*..-- ___..._ .+ .._._.. -_, -m. .._ .._ _. 

z .21@3+00 .2857+00 .3571+00 .9286*00 .5000*00 .5711(*00 .6’(29+00 3 

.-T9v-- 
.996’1rl+oo 
.99770*qo 

~.lfltle*lJ1 
.1nL99+iJI 
.1oio7+01 
.loLb5+LU 
.10197*c1 

-- .101Y3~Dl--’ 
.lrl~ll+ol 
.lr1331,G 
.13429*0 I 
117497+01 -. 
.105111+01 
.lil523+01 

.13307*01 

.1078:+Dl 

:l;::t;::f 
..10227+‘)1 
.13iaz+o 
.1’)266+3 i 
.13396+01 
.lUlta6+01 
.11522+Jl 

:thW,o: 

:zEy 
.10013+0 
.10078*01 

:!8iePZ:bi 
.1021)7+01 

7102 5+01 
d .lU3 3+Ul 

. io’I29+c1 

.10509+lJ1 
i:o:;;+“,; 

.l 514:01 8 

-- . . 
. . 
. 
. . 

_ -* . . 
. . 
. 
. . 

.5700t+oo 

l 
.42857+0n 
.35714+‘)0 

lj--i2857f+00 
.21r2v*oa 

i 

.1428b+IlO 

11 -.- 
.71113+0’) 

:F%:% 
.7035a*;u - 
.80381+?0 
.83566+73 
.ea135+;LJ 
.9345J+:J 
.95933+c,; 
.96832+.10 
.99132+:L, 
.9oa23+70 
.98PlJ9’~0 
.e5994*“3 
.848’JL’*,7J 
.94b2!+lj 

- 12 -’ 13-. 
.7457+00 .t?571+uo 

.6032r+oo .39294+30 

.6075u+oG 
>62;254Ou 

.39678+Oc 
.90#29~OU 

.64i25*‘10 .U2706+00 

.b7596+00 .U5427+00 

.7261L+10 .4947t3+50 

.79354*;t. .5:721+70 

.a5l,05*00 .67762+qU 

.85511’CO .65513+30 
t82i.N9*r)O 
.7n193+00 

.b3899+O,j 

.h08bO*OO 
.74972*30 .s8156*00 
.7?bdY+30 .56303+3u 
.71591J+uc .55781*00 
.71197+r?r, .5’4941.‘li: 

.--1n --. - . 
.9286+00 

.lb572+CO 
.l 7a3+GO 

4 ;1 s16+00-- 
.ia363+33 
.19581+00 
.21243*Llo 
.2llZ63’J’i’ I 
.3?199+Ur! 
.3595C’Url 
.38 llb*iID 
438 71+00 f 
.37089+uP 
l 36G98+Uo 
.353e9+0(1 
.35172+;10 

IS.-- 
.1oFo+u1 

.ooou9 

-~~I~~--- .- 

. ocoor 

. OClO@ 
. OL[1’1” 
.olJolJc 
, ODOOC 
.oocon .-- 
.nuoor 
.ooooo 
. maor 
.crjnnr 

--- .- 

_ 



LEVEL 1 l **** V'VEL **lb** 
-____ -- -_-- . . . . --. '. --._ -~_~_-----. -- --... - -.-.--- ___.~.-_- ----_- --._ 

-_-- z17:--- -- .&a - . 2 ^ --- 3. - -- T- -- 3 -L-- 7.. 
.. 

8 
'- 

___ 
-- 

.p 
_... 

-_. 
.- 

-ml --.__.--- 
.7143-01 .1929'00 .21')3+rlo .2a57+00 .3571+00 .S286+00 .5000+00 .5?1~*00 .6929'00 

.92857+00 

..05714+Go 

.70571+00 

.64206*OC 

i 
.57143+00 
.5ocloc+oo 

--T--.42857rOn 

s ::;:j::$! 
.21929+0[1 

-=;s6QFFlT 
-*14207-03 
-.17617-03 

.bC!943-04 
.7779EL03 

..21378-02 
.37945-02 
,'14864-02 

-Liz; ;g y7 

-3 .79999-u 
.8959.3-09 

;;IPGlc-o3 
-.15111)8-03 
-.22b23-19 

-b3177F=lT- -5zx335T 
-.64091-03 -.93720-03 
-.10861-02 -. b223-U2 
-.lUPltZ-02 -. 7829-02 f 
-.33177=13 ;.111137-02 

.1375D-02 .85360-03 

.3'+795-02 .31809-02 

.43906-02 .UZObZ-D2. 
... .32P61=07- -.-;.J'J362'07- 

-.732n1-03 
-.7R410-19 

-577mv 
:::;;:;I 2’ 1 
-.223br-c2 
'.lS!J99=Ll2 

.02217-cl3 

.28bb8-II2 

.39635-a2 
-;27675=02 

l :5’9’54:0,1 
::22380-02 

7fZf0 ?o;- 3 
-.22684-02 
-.26226-C2 
-.193vz-02 

.70372-05 

.25i'J9-02 

.36752-02 
-.2469b=CZ 

m~~~$ 

-.23634-02 
-.13639-(32 
-.44613-19 

-.29474-a2 
-.23093-02 
-.39500-03 

.21552-02 

.33Ul6-02 
-.ZlfPO-Of 
I:$5;g-o' 

-2 8 -.29557- 2 
-.25996-02 
-.14866-02 
-.43185-19 

-.32579-02 
;.27016-02 
-.83158-03 

.17207-02 

.29469-02 

73--Ytl=7r4=rJo 

:: 
.74571*0(1 
.71U29+30 

.4:457+uo 

.35714+uo 
-~-x28571+m 

: 
:I 

11129'00 
4246*00 

.71'429-01 . 
1.. .zrc-r 

--. .-_- .-. 

.7OqiyZU 
-.lbTLL-I2 

=.Jm71'~"2 
-.Ql(lZb-02 
-.42385-32 
-.31177-:2 
-.9532'~-73 

.20Pb4-C3 
-.87189-?3 
-.3I~742-52 
=.99209-[12 
-.43831-02 
-.33679-:2 
-.179ib-?2 
-.57i15-19 

-,'J‘t99b-02 
-.51549-'32 
-,47349-02 
-.31543i02 
-.2Ub7'4-02 
-.31UbO-02 
-.49i93-02 

-TSb206'02 
-.50283-02 
-.351(29-02 
-.14878-02 
-.5~?151-19 

- r3-- .--- -- l-9 - - 
.8571*00 .920b+lO 

-.38653-20 -.29002-2 
-.16759-02 -.14693-G ? 
-~:::::EX:--;;5u"lz;o~ 

-.44903-02 
-.b4670-02 -.69133-U2 
-.71103-02 -.8898C-II2 
-.66185-02 -I1 366-61 
-.6(3209-02 -.l !? 270-01 
-.69?55-02 -. 2343-01 
-.8fl931-02 -I 2863-[I1 1 
=.7811B=Of -'.113SU~O~-- 
-.63130-02 -.84792-02 
-.42669-02 -,544bb-02 
-.21262-02 -.26192-U2 
-.S1574-19 ~.SbCl62-19 

)Ol 

-_. 

_..- 

LEVEL 1 *I*** Y-VEL ***++ 

_ 



12- .oioo .7:4+01 .1:29+00~ ' 5 1 9 10 
Z z .2143*00 .2857+00 .36571'00 .~286*00 .5~00*0fJ .57111*00 ' .6cl29+00 

.-+;$;&?;;jj +;$f f:'6767103 -.399G'J103 I:b"'25IOJ ;:~'W;?I",; I::$:;;I;$ 
-.;:;l;-;;- '.bb899-US --84'456-03 

- -.78946-03 -.90803-u3 -.lL1887-02 -.1279b-02 
1 J~wl~~-O' -.14704-02 -.89954-03 -.82693-03 -.92736-03 -.1087U-02 -.12591-02 

_.._~__~ -.---_ -- - _ -_. .--- ._____.__ .__-------.-.- 

- -_. 
-I z=--- - 

x 
.L12e57+uc 
.357111+0fl 

5 .m57-l+ou 

::t P @X:8 

.  .._ lf-.--- . - -  ** _-._. 

.7143+00 .7857*00 
-.18978-53 -.56981-04 
-.11075-133 .12297-w 

3xm'~~~--m~~- 

:,11572-02 -.78bi'8-03 
-. 985F‘;cZ-=;15659=T2 

f -. 2250-02 -.13585-02 
-.36693-33 -.@0586-03 
-.7372il-03 -.76177-03 

-~Tr9~76=~~=;138VZ=U? 

2%~~;; ~~f%~W~~ 1 

-.19594-12 =;13755-02. 

. .-.. n3------.- .*.--.-.- 

.8571+00. .9286+r)O 
.12354-03 .10004-03 
.17530-03 ,12096-03 

.19104-03 
-.28018-03 -.15988-39 
:*a79oz=o3 =; 2556 Ok03 
-.b7131-03 -.22820-03 
-.35481-03 
-.71388-cl3 s&Kb: 

‘;17lJ93=G--;556Slb~U3-- 
-.14229-02 -.65517-03 
-.13933-02 -.64302-03 
-.12b77-02 -.59942-03 
'.123OK-02 -.5G533;03 

--._.. ., 

__.- -m-- 

___-___-..-. _----..--- .- _..- . _..__.____~. --- .- 

_ - _ _ 



m 
0 

PEiJSIli CWWEIJ f-E*TIEf?tf-rtE---TFST-MSE R+tf+F+Eu-r 

LOCATION OF CENTFRLINE I 

BY0 q cl. 
IDUCT .=..l 

-----a-----P --- ._.. .._. 

.50000000*00 

._.__ NOMACH - _. ~. 

LEVEL 1 l **** RHO *+*** 

:5’ .*“llOt+01 
- l;--‘;V2857WJ 

,857 LU’O3 
,7R571*0c 
.71429+flr 
.642a6+~1? 
.57143+co 

7 
.5rJLiOC*Co 
.42957+CO 

-‘--6---.35714ic!l 

: 
.28571+lJ? 
.21429+‘lU 
.I”ZBb+lG 

.dC” 
..99969+gO 

.ZFWbPi~K 

.99971+‘13 
99971+no 

;99973+no 
.999711+li, 
.99973+1’0 
.9997C*oil 
.999bb+“U 
.99966+“O 
.9996e+Co 
.99971*Cll 
.99974+CG 
.99975+no 
.99976+75 

.7:rl3-Gl 

.99972+00 
-;999724ou- 

.99972+OG 

.99972*r3G 

.9Q973+L;O 

.99975+rJo 

.99y75+00 

.99971’@0 
,,99967+UO 

.99967+00 

.99569+00 

.99971+00 

.99973+00 

.99974+00 

. 99974+fJO 

. *:2mJ AW”0 
.99970+00 

.-;T9Vn*ao--- 
,99977+01) 
.99915+u’l, 
.99976+00 
.99977+00 
.99977+al 
.99973+uo 
.999bB+UO 

-YWPbE*OU - 
.9997u+00 
.99971+00 
.9997 +rJo 

a .9997 +iJi) 
.99969+U3 

.2;tT-lm 
.999e.1+00 
.W98 ‘Juu- 

b .9991 +oci 
.99977+cti 
.99977+00 
.9997A400 
.9997a+oU 
,99973+ljLi 
.99968+00 
.~9967+00 
.99969+00 
.99969+00 

99969+00 
:99967&00 
.99967+@C 

.3:7**00 

_..-- - . -. .--___-- .._ -. -.-._ -L-. ._ --. .---_-- ------- 

.71u29*0[1 

.642R6+0G 

.571uJ+DO 

.5~-JCO~Crr 

.42e57*90 

.35719+0r 

.2857 l+c)‘3 

- 36 
92v+oc 
:R6’C7 

m$;-zJl 

.999Lle+7i) 

.999Ll9+q(; 

.99912+?ll 
~.99Plb+ULl 
.99923+10 
.99933+1c 
.999115+cc 
.9995r+-‘0 
.9994 1+3c 
.99924+‘u 
.999Ub+lrl 
;99B92+13 
.99~tl!‘YO 
.9987R+“b 
.99R7h+ ‘0 

A2 
.78fT+[r0 

.99ab4+00 

.99865+10 

.99k’67+00 
;99071+ 
a;;;;;~~-- 

.99697+00 

. 59977+ JO 

.999iJlJ+00 

.99i)c31+00 

.99862+CO 

.99649+0 

.99840’11 8 

.99bS5+00 

.9~b3s+00 

13 
.857l+Ou 

.99rl24*0 

.99e24*1 8 

.99R25+0C 
;99826*Uil 
.99927+ 0 

4 .99829+ IJ 
.99e32+!lo 
.99e41+00 
.99e39+‘)0 
.99R27+r30 
.99813+0O 

14 
,928b i’TU 

.99799+ua 
l 997984Lirl 
,99798+UO 
iP9796 +crrm-- 
.99794+Un 
.99790+0’1 

99785+00 
:997e1+oo 
.99779+0ri 
.99771)+JU 
.99768+[10 
:99762bD 
.99759+u 8 
.99756+00 
.99756+UrJ 

l 99797+“U ^__,. 
.99790+00 

__ .._ 

99786+oLl 
:997e 1+00 
.9977l’UO 
.9976?+“G 
.99753+Iju 
.997LIu*au 
.9973R,UtJ 
,997 5iUG -- -- 

3 

_ - 

,997 2+L?u 
.99731+00 
.99731+00 



PEPSIA --CWVEO-CFEWFEWiW-FE5F-CA%F--- WHW.- .____ ---_- -.-._ .- _ .-..- ---. 

I LOCATION OF CENTERLINE I .U@ 00000 3-T” s’“~‘~~~f6’:f0~Y8~~6~&~~fi~0~@.@~, ox = .50000000*00 
KOORO- 1 

OYD = 0. IFRCT = 1 ITCNT = 0 

-X!!LCLL1 IMACH = 1 _ -- --- NO~!WL-K.~. -- ,. ” 

__-.----~.._-._. -_- - ..-. L----. .4 

LEY’EL 1 l **** PRESS ++**+ 

12: -- ..- z-.yL 

2 .10:00+01 --n-7v2es 
T ,.8571”4 0 

.78571400 

.71’I29+00 
10’--;6S2Sb~Fl 

f 
.57 L13*00 

b .5rJ oc+oo 

.1’1286+03 

.71433+72 
?1~5SFT-- 

:71433+c2 
.711133+02 
.71931+g2 
.71929( .z-- 
.71027+02 
.71427+02 

.-r71426+72 

:?E%E- 
.71q21+32 
.711(21+12 
.7192l+Tl2-- 
.71921+c!2 

IZZ 
-’ z :-- 

.1000c+01 

.92857+0? 

.a571Ll+qn 
-T78571’our- 

.7142.9+00 

.64286+ I! 

.571113+ 0 s 
--;57~lJc+qr 

.112857*‘J” 

.35714*ilr! 

.28571*JO 
-rz1929+00 

.14286*00 
m~;-Ol 

- .::wuu ::::‘,::43 
.719’16+32 

--7l9lr9+02 - 
.714ui*?2 
.71Q3b+32 
.71L131+12 
:;;;$;:I’ 5 
.71416*?2 
.7141:+12 
;7lw9402-- 
.71438+12 
.71’4’.17+‘)2 
.71Lt06+02 

.7111113’U2 

.71439+ut 

.71433*02 
;71427’02 
.7192tJ*12 
.71slj+U2 
.71Q11+02 
;71’4?8+02’-. 
.71437+02 
.71110b+flt 
?71435+02 

13 
; !35Tlm 

.71L(LIcl+II2 

.71U48+02 

.719”7+72 

XE~; - 

.71434*cl2 

.71427+u2 

.7142G+O 
.71414+‘1 5 
.71’410+32 
.71407+02 -’ 
.71’406+02 
.71SO5+02 
.71Ml5+02 

.71449+ 2 
6 .7144a+ 2 

.71L19R*02 
77191brOf 

.718Qu+02 

:: i:g:o,1 
.71s27+02 
.7142F+O2 
.71414+02 
.7111lJ9*02 
.71907~02 
.7 40~*02 
.7 904402 i 
.71’40u+02 

I- -. ---- - --.- .-- .- ..- ^.. ._. 

\ _ - . . -..- 

.-. _-.- .._. .-_. __-- _.... -_.-_-----.~--- -..- 



-9EPSIrj --EUW’-eENTER+rWJE- f~fF--f35lF--R~ WY-.- ..----.. . -. 

LEVEL, 1 l **** CP/2 l **** 

__ .__ --_-- ..--- fj-*m-w-. .--... 

29 :w: =i tssm~llr 
-.26626-01 
-.27135-01 
-.27958-01 

--cmm 
-.31904-01 
-.327bC-01 
-.3283C-01 
-;326 l-ill 

f -.325 9-01 

-..?1777-01 
~-=;23829~uf 

-.257119,-01 
-.26.510-01 
-.27807-01 

T299IFDT 
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Figure 1. Generation of Transverse Planes from Two Vector Fields 
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Figure 2. The Osculating Sphere 
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Figure 3. Transformation as an Embedding 
into Three Dimensional Euclidian Space 
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Figure 4a. Transverse Planar Cuts of Constant Axial Location y3 

Figure 4b. Ruled Surface of Constant Pseudo-Angle y1 

Figure 4c. Tube-Like Surfaces of Constant Pseudo-Radius y2 
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Figure 9. S-Shaped Bend with Circular Cross Section 

(FLOW LEFT TO RIGHT) 
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