359 research outputs found

    Underestimated Passive Volcanic Sulfur Degassing Implies Overestimated Anthropogenic Aerosol Forcing

    Get PDF
    The Arctic is warming at almost four times the global rate. An estimated sixty percent of greenhouse-gas-induced Arctic warming has been offset by anthropogenic aerosols, but the contribution of aerosols to radiative forcing (RF) represents the largest uncertainty in estimating total RF, largely due to unknown preindustrial aerosol abundance. Here, sulfur isotope measurements in a Greenland ice core show that passive volcanic degassing contributes up to 66 ± 10% of preindustrial ice core sulfate in years without major eruptions. A state-of-the-art model indicates passive volcanic sulfur emissions influencing the Arctic are underestimated by up to a factor of three, possibly because many volcanic inventories do not include hydrogen sulfide emissions. Higher preindustrial volcanic sulfur emissions reduce modeled anthropogenic Arctic aerosol cooling by up to a factor of two (+0.11 to +0.29 W m−2), suggesting that underestimating passive volcanic sulfur emissions has significant implications for anthropogenic-induced Arctic climate change

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    The Calculus of Committee Composition

    Get PDF
    Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to determine both the number of evaluators and the method for combining their judgments. Previous work has focused on the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important consideration that is intimately connected with the methodology and the success of the evaluation. We address the question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge)/(cost per error) ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel method to optimize evaluation procedures

    Economic Games on the Internet: The Effect of $1 Stakes

    Get PDF
    Online labor markets such as Amazon Mechanical Turk (MTurk) offer an unprecedented opportunity to run economic game experiments quickly and inexpensively. Using Mturk, we recruited 756 subjects and examined their behavior in four canonical economic games, with two payoff conditions each: a stakes condition, in which subjects' earnings were based on the outcome of the game (maximum earnings of $1); and a no-stakes condition, in which subjects' earnings are unaffected by the outcome of the game. Our results demonstrate that economic game experiments run on MTurk are comparable to those run in laboratory settings, even when using very low stakes

    Golden Rule of Forecasting: Be Conservative

    Get PDF
    This article proposes a unifying theory, or the Golden Rule, or forecasting. The Golden Rule of Forecasting is to be conservative. A conservative forecast is consistent with cumulative knowledge about the present and the past. To be conservative, forecasters must seek out and use all knowledge relevant to the problem, including knowledge of methods validated for the situation. Twenty-eight guidelines are logically deduced from the Golden Rule. A review of evidence identified 105 papers with experimental comparisons; 102 support the guidelines. Ignoring a single guideline increased forecast error by more than two-fifths on average. Ignoring the Golden Rule is likely to harm accuracy most when the situation is uncertain and complex, and when bias is likely. Non-experts who use the Golden Rule can identify dubious forecasts quickly and inexpensively. To date, ignorance of research findings, bias, sophisticated statistical procedures, and the proliferation of big data, have led forecasters to violate the Golden Rule. As a result, despite major advances in evidence-based forecasting methods, forecasting practice in many fields has failed to improve over the past half-century

    Families’ roles in children’s literacy in the UK throughout the 20th century

    Get PDF
    This paper explores the changing roles of families in children’s developing literacy in the UK in the last century. It discusses how, during this time, understandings of reading and writing have evolved into the more nuanced notion of literacy. Further, in acknowledging changes in written communication practices, and shifting attitudes to reading and writ- ing, the paper sketches out how families have always played some part in the literacy of younger generations; though reading was frequently integral to the lives of many families throughout the past century, we consider in particular the more recent enhancement of children’s literacy through targeted family programmes. The paper considers policy implications for promoting young children’s literacy through work with families

    A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    Get PDF
    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation

    Joy leads to overconfidence, and a simple countermeasure

    Get PDF
    Overconfidence has been identified as a source of suboptimal decision making in many real-life domains, with often far-reaching consequences. This study identifies a mechanism that can cause overconfidence and demonstrates a simple, effective countermeasure in an incentive-compatible experimental study. We observed that joy induced overconfidence if the reason for joy (an unexpected gift) was u
    corecore