78 research outputs found

    One-step Multiplex Transgenesis via Sleeping Beauty Transposition in Cattle

    Get PDF
    Genetically modified cattle are important for developing new biomedical models and for an improved understanding of the pathophysiology of zoonotic diseases. However, genome editing and genetic engineering based on somatic cell nuclear transfer suffer from a low overall efficiency. Here, we established a highly efficient one-step multiplex gene transfer system into the bovine genome.Fil: Garrels, Wiebke. Institut für Nutztiergenetik; AlemaniaFil: Talluri, Thirumala R.. Institut für Nutztiergenetik; AlemaniaFil: Apfelbaum, Ronja. Institut für Nutztiergenetik; AlemaniaFil: Carratalá, Yanet P.. Institut für Nutztiergenetik; AlemaniaFil: Bosch, Pablo. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Pötzsch, Kerstin. Paul Ehrlich Institute; AlemaniaFil: Grueso, Esther. Paul Ehrlich Institute; AlemaniaFil: Ivics, Zoltan. Paul Ehrlich Institute; AlemaniaFil: Kues, Wilfred. Institut für Nutztiergenetik; Alemani

    Cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia after a second ChAdOx1 nCoV-19 dose.

    Get PDF
    © 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.Cerebral venous thrombosis (CVT) is the most common and severe manifestation of vaccine-induced immune thrombotic thrombocytopenia (VITT), which is a rare side effect of the SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (Vaxzevria, AstraZeneca/Oxford). The absolute risk of VITT and VITT-related CVT is estimated at 20 and 8 per million first doses of ChAdOx1 nCoV-19, respectively. So far, no definite VITT cases occurring after a second ChAdOx1 nCoV-19 vaccine dose have been reported, raising the question of whether VITT only occurs after a first dose. Two pharmacovigilance studies reported cases of thrombosis with thrombocytopenia after a second ChAdOx1 nCoV-19 dose, but because of lack of clinical data, none of these could be classified as VITT. Knowledge on whether VITT can occur after a second ChAdOx1 nCoV-19 dose is relevant for clinicians and policymakers, especially in low- and middle-income countries, which are currently the main users of adenovirus-based vaccines. We used data from the “CVT after SARS-CoV-2 vaccination” registry to identify VITT-related CVT cases occurring after a second ChAdOx1 nCoV-19 dose. Details of this registry have been published. Briefly, this ongoing study collects data on patients with CVT with symptom onset ≤28 days from SARS-CoV-2 vaccination, regardless of the type and dose of vaccine. The study is endorsed by the European Academy of Neurology and the European Stroke Organization. Investigators are instructed to report consecutive cases from their hospitals. The ethical review board of the Academic Medical Centre issued a waiver of formal approval for this observational study. Each center obtained local permission to carry out the study and acquired informed consent for the use of pseudonymized care data according to national law. We used the case definition criteria of the United Kingdom expert hematology panel to classify cases as definite, probable, possible, or unlikely VITT after ChAdOx1 nCoV-19 administration among CVT cases reported until 1 December 2021.This work was supported by The Netherlands Organisation for Health Research and Development (ZonMw, grant number 10430072110005) (J.M.C.) and the Dr. C. J. Vaillant Foundation (J.M.C.).info:eu-repo/semantics/publishedVersio

    Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome

    Get PDF
    Version 2; peer review: 3 approved. Available from F1000 Research via the DOI in this recordBackground: Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome. A range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown. Methods: We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. Results: In 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. In silico analysis of these genes highlighted SMARCA2 and RFX3 as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. Conclusions: This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated. Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.Wellcome TrustRoyal Societ

    Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency

    Get PDF
    Aptamers that can be regulated with light allow precise control of protein activity in space and time and hence of biological function in general. In a previous study, we showed that the activity of the thrombin-binding aptamer HD1 can be turned off by irradiation using a light activatable ‘caged’ intramolecular antisense-domain. However, the activity of the presented aptamer in its ON state was only mediocre. Here we studied the nature of this loss in activity in detail and found that switching from 5′- to 3′-extensions affords aptamers that are even more potent than the unmodified HD1. In particular we arrived at derivatives that are now more active than the aptamer NU172 that is currently in phase 2 clinical trials as an anticoagulant. As a result, we present light-regulatable aptamers with a superior activity in their ON state and an almost digital ON/OFF behavior upon irradiation

    Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency

    Get PDF
    Aptamers that can be regulated with light allow precise control of protein activity in space and time and hence of biological function in general. In a previous study, we showed that the activity of the thrombin-binding aptamer HD1 can be turned off by irradiation using a light activatable ‘caged’ intramolecular antisense-domain. However, the activity of the presented aptamer in its ON state was only mediocre. Here we studied the nature of this loss in activity in detail and found that switching from 5′- to 3′-extensions affords aptamers that are even more potent than the unmodified HD1. In particular we arrived at derivatives that are now more active than the aptamer NU172 that is currently in phase 2 clinical trials as an anticoagulant. As a result, we present light-regulatable aptamers with a superior activity in their ON state and an almost digital ON/OFF behavior upon irradiation

    Addressing information asymmetries in online peer-to-peer lending

    Get PDF
    Digital technologies are transforming how small businesses access finance and from whom. This chapter explores online peer-to-peer (P2P) lending, a form of crowdfunding that connects borrowers and lenders. Information asymmetry is a key issue in online peer-to-peer lending marketplaces that can result in moral hazard or adverse selection, and ultimately impact the viability and success of individual platforms. Both online P2P lending platforms and lenders seek to minimise the impact of information asymmetries through a variety of mechanisms. This chapter discusses the structure of online P2P lending platforms and reviews how the disclosure of hard and soft information, and herding can reduce information asymmetries. The chapter concludes with a discussion of further avenues for research
    corecore