871 research outputs found
Dynamics of Perfectly Wetting Drops under Gravity
We study the dynamics of small droplets of polydimethylsiloxane (PDMS)
silicone oil on a vertical, perfectly-wetting, silicon wafer. Interference
videomicroscopy allows us to capture the dynamics of these droplets. We use
droplets with a volumes typically ranging from 100 to 500 nanolitres
(viscosities from 10 to 1000 centistokes) to understand long time derivations
from classical solutions. Past researchers used one dimensional theory to
understand the typical scaling for the position of the tip of the
droplet in time . We observe this regime in experiment for intermediate
times and discover a two-dimensional, similarity solution of the shape of the
droplet. However, at long times our droplets start to move more slowly down the
plane than the scaling suggests and we observe deviations in droplet
shape from the similarity solution. We match experimental data with simulations
to show these deviations are consistent with retarded van der Waals forcing
which should become significant at the small heights observed
Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna
Plasmonic antennas are key elements to control the luminescence of quantum
emitters. However, the antenna's influence is often hidden by quenching losses.
Here, the luminescence of a quantum dot coupled to a gold dimer antenna is
investigated. Detailed analysis of the multiply excited states quantifies the
antenna's influence on the excitation intensity and the luminescence quantum
yield separately
Theory of selective excitation in Stimulated Raman Scattering
A semiclassical model is used to investigate the possibility of selectively
exciting one of two closely spaced, uncoupled Raman transitions. The duration
of the intense pump pulse that creates the Raman coherence is shorter than the
vibrational period of a molecule (impulsive regime of interaction). Pulse
shapes are found that provide either enhancement or suppression of particular
vibrational excitations.Comment: RevTeX4,10 pages, 5 figures, submitted to Phys.Rev.
On the principal bifurcation branch of a third order nonlinear long-wave equation
We study the principal bifurcation curve of a third order equation which
describes the nonlinear evolution of several systems with a long--wavelength
instability. We show that the main bifurcation branch can be derived from a
variational principle. This allows to obtain a close estimate of the complete
branch. In particular, when the bifurcation is subcritical, the large amplitude
stable branch can be found in a simple manner.Comment: 11 pages, 3 figure
A symmetry classification for a class of (2+1)-nonlinear wave equation
In this paper, a symmetry classification of a -nonlinear wave equation
where is a smooth function on , using
Lie group method, is given. The basic infinitesimal method for calculating
symmetry groups is presented, and used to determine the general symmetry group
of this -nonlinear wave equation
Discrete Cylindrical Vector Beam Generation from an Array of Optical Fibers
A novel method is presented for the beam shaping of far field intensity
distributions of coherently combined fiber arrays. The fibers are arranged
uniformly on the perimeter of a circle, and the linearly polarized beams of
equal shape are superimposed such that the far field pattern represents an
effective radially polarized vector beam, or discrete cylindrical vector (DCV)
beam. The DCV beam is produced by three or more beams that each individually
have a varying polarization vector. The beams are appropriately distributed in
the near field such that the far field intensity distribution has a central
null. This result is in contrast to the situation of parallel linearly
polarized beams, where the intensity peaks on axis
Dewetting of thin polymer films near the glass transition
Dewetting of ultra-thin polymer films near the glass transition exhibits
unexpected front morphologies [G. Reiter, Phys. Rev. Lett., 87, 186101 (2001)].
We present here the first theoretical attempt to understand these features,
focusing on the shear-thinning behaviour of these films. We analyse the profile
of the dewetting film, and characterize the time evolution of the dry region
radius, , and of the rim height, . After a transient time
depending on the initial thickness, grows like while
increases like . Different regimes of growth are
expected, depending on the initial film thickness and experimental time range.Comment: 4 pages, 5 figures Revised version, published in Physical Review
Letters: F. Saulnier, E. Raphael and P.-G. de Gennes, Phys. Rev. Lett. 88,
196101 (2002
Templeting of Thin Films Induced by Dewetting on Patterned Surfaces
The instability, dynamics and morphological transitions of patterns in thin
liquid films on periodic striped surfaces (consisting of alternating less and
more wettable stripes) are investigated based on 3-D nonlinear simulations that
account for the inter-site hydrodynamic and surface-energetic interactions. The
film breakup is suppressed on some potentially destabilizing nonwettable sites
when their spacing is below a characteristic lengthscale of the instability,
the upper bound for which is close to the spinodal lengthscale. The thin film
pattern replicates the substrate surface energy pattern closely only when, (a)
the periodicity of substrate pattern matches closely with the characteristic
lengthscale, and (b) the stripe-width is within a range bounded by a lower
critical length, below which no heterogeneous rupture occurs, and an upper
transition length above which complex morphological features bearing little
resemblance to the substrate pattern are formed.Comment: 5 pages TeX (REVTeX 4), other comments: submitted to Phys. Rev.Let
Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening
We study a model for a thin liquid film dewetting from a periodic
heterogeneous substrate (template). The amplitude and periodicity of a striped
template heterogeneity necessary to obtain a stable periodic stripe pattern,
i.e. pinning, are computed. This requires a stabilization of the longitudinal
and transversal modes driving the typical coarsening dynamics during dewetting
of a thin film on a homogeneous substrate. If the heterogeneity has a larger
spatial period than the critical dewetting mode, weak heterogeneities are
sufficient for pinning. A large region of coexistence between coarsening
dynamics and pinning is found.Comment: 4 pages, 4 figure
- …
