296 research outputs found

    A 16-Year Haemodynamic Follow-up of Women with Pregnancy-related Medically Treated Iliofemoral Deep Venous Thrombosis

    Get PDF
    AbstractObjectives to evaluate clinical and functional long-term outcomes following pregnancy-related medically treated iliofemoral deep venous thrombosis (DVT). Design retrospective follow-up of patients identified through a registry search. Material and methods twenty-five women underwent clinical examination, colour duplex ultrasound and computerised strain-gauge plethysmography on two occasions a mean of nine and 16 years after DVT. Results 40% of the patients were completely asymptomatic and 52% had no clinical signs of venous disease after a mean follow-up of 16 years. The clinical signs were in general mild, and none of the 25 patients had skin changes or ulcers. Deep venous reflux was found in 36% of the patients; the same percentage at nine- and 16-years follow-up, and 24% had normal ultrasonographic appearance of all deep veins. None of the patients had plethysmographic evidence of outflow obstruction. There was a significant relationship between measures of venous reflux and the presence of leg swelling, but there was no clear relation between functional abnormalities and the extent of the initial DVT. Conclusion even after 16 years there are relatively mild symptoms and signs of venous disease in women with medically treated pregnancy-related iliofemoral DVT. Our results do not support earlier stated opinions that these patients represent a particular risk group for developing post-thrombotic syndrome

    Pregnancy and low back pain

    Get PDF
    Back pain is ubiquitous in today’s society and is particularly common during pregnancy. There are multiple factors contributing to these symptoms during pregnancy including pelvic changes as well as alterations to loading. Potential imaging modalities are limited during pregnancy due to the desire to limit ionizing radiation exposure to the fetus. Treatments are generally conservative, exercise-based interventions and alternative modalities may also be considered. Low back pain associated with pregnancy does generally resolve postpartum

    Differential Phosphorylation of Ribosomal Proteins in Arabidopsis thaliana Plants during Day and Night

    Get PDF
    Protein synthesis in plants is characterized by increase in the translation rates for numerous proteins and central metabolic enzymes during the day phase of the photoperiod. The detailed molecular mechanisms of this diurnal regulation are unknown, while eukaryotic protein translation is mainly controlled at the level of ribosomal initiation complexes, which also involves multiple events of protein phosphorylation. We characterized the extent of protein phosphorylation in cytosolic ribosomes isolated from leaves of the model plant Arabidopsis thaliana harvested during day or night. Proteomic analyses of preparations corresponding to both phases of the photoperiod detected phosphorylation at eight serine residues in the C-termini of six ribosomal proteins: S2-3, S6-1, S6-2, P0-2, P1 and L29-1. This included previously unknown phosphorylation of the 40S ribosomal protein S6 at Ser-231. Relative quantification of the phosphorylated peptides using stable isotope labeling and mass spectrometry revealed a 2.2 times increase in the day/night phosphorylation ratio at this site. Phosphorylation of the S6-1 and S6-2 variants of the same protein at Ser-240 increased by the factors of 4.2 and 1.8, respectively. The 1.6 increase in phosphorylation during the day was also found at Ser-58 of the 60S ribosomal protein L29-1. It is suggested that differential phosphorylation of the ribosomal proteins S6-1, S6-2 and L29-1 may contribute to modulation of the diurnal protein synthesis in plants

    High Light Induced Disassembly of Photosystem II Supercomplexes in Arabidopsis Requires STN7-Dependent Phosphorylation of CP29

    Get PDF
    Photosynthetic oxidation of water and production of oxygen by photosystem II (PSII) in thylakoid membranes of plant chloroplasts is highly affected by changes in light intensities. To minimize damage imposed by excessive sunlight and sustain the photosynthetic activity PSII, organized in supercomplexes with its light harvesting antenna, undergoes conformational changes, disassembly and repair via not clearly understood mechanisms. We characterized the phosphoproteome of the thylakoid membranes from Arabidopsis thaliana wild type, stn7, stn8 and stn7stn8 mutant plants exposed to high light. The high light treatment of the wild type and stn8 caused specific increase in phosphorylation of Lhcb4.1 and Lhcb4.2 isoforms of the PSII linker protein CP29 at five different threonine residues. Phosphorylation of CP29 at four of these residues was not found in stn7 and stn7stn8 plants lacking the STN7 protein kinase. Blue native gel electrophoresis followed by immunological and mass spectrometric analyses of the membrane protein complexes revealed that the high light treatment of the wild type caused redistribution of CP29 from PSII supercomplexes to PSII dimers and monomers. A similar high-light-induced disassembly of the PSII supercomplexes occurred in stn8, but not in stn7 and stn7stn8. Transfer of the high-light-treated wild type plants to normal light relocated CP29 back to PSII supercomplexes. We postulate that disassembly of PSII supercomplexes in plants exposed to high light involves STN7-kinase-dependent phosphorylation of the linker protein CP29. Disruption of this adaptive mechanism can explain dramatically retarded growth of the stn7 and stn7stn8 mutants under fluctuating normal/high light conditions, as previously reported
    corecore