2,016 research outputs found

    Precursors and Main-bursts of Gamma Ray Bursts in a Hypernova Scenario

    Full text link
    We investigate a "hypernova" model for gamma-ray bursts (GRBs), i.e., massive C+O star model with relativistic jets. In this model, non-thermal precursors can be produced by the "first" relativistic shell ejected from the star. Main GRBs are produced behind the "first"-shell by the collisions of several relativistic shells. They become visible to distant observers after the colliding region becomes optically thin. We examine six selected conditions using relativistic hydrodynamical simulations and simple analyses. Interestingly, our simulations show that sub-relativistic (v∌0.8c)(v \sim 0.8c) jets from the central engine is sufficient to produce highly-relativistic (Γ>100)(\Gamma > 100) shells. We find that the relativistic shells from such a star can reproduce observed GRBs with certain conditions. Two conditions are especially important. One is the sufficiently long duration of the central engine \gsim 100 sec. The other is the existence of a dense-shell somewhere behind the "first"-shell. Under these conditions, both the existence and non-existence of precursors, and long delay between precursors and main GRBs can be explained.Comment: 8 pages, 2 figures. Accepted for publication in the Astrophysical Journal (Letters

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    Novae as a Mechanism for Producing Cavities around the Progenitors of SN 2002ic and Other SNe Ia

    Get PDF
    We propose that a nova shell ejected from a recurrent nova progenitor system created the evacuated region around the explosion center of SN 2002ic. In this picture, periodic shell ejections due to nova explosions on a white dwarf sweep up the slow wind from the binary companion, creating density variations and instabilities that lead to structure in the circumstellar medium (CSM). Our model naturally explains the observed gap between the supernova explosion center and the CSM in SN 2002ic, accounts for the density variations observed in the CSM, and resolves the coincidence problem of the timing of the explosion of SN 2002ic with respect to the apparent cessation of mass-loss in the progenitor system. We also consider such nova outburst sweeping as a generic feature of Type Ia supernovae with recurrent nova progenitors.Comment: Accepted to ApJL. 11 pages, 1 tabl

    Stability of the r-modes in white dwarf stars

    Get PDF
    Stability of the r-modes in rapidly rotating white dwarf stars is investigated. Improved estimates of the growth times of the gravitational-radiation driven instability in the r-modes of the observed DQ Her objects are found to be longer (probably considerably longer) than 6x10^9y. This rules out the possibility that the r-modes in these objects are emitting gravitational radiation at levels that could be detectable by LISA. More generally it is shown that the r-mode instability can only be excited in a very small subset of very hot (T>10^6K), rather massive (M>0.9M_sun) and very rapidly rotating (P_min<P<1.2P_min) white dwarf stars. Further, the growth times of this instability are so long that these conditions must persist for a very long time (t>10^9y) to allow the amplitude to grow to a dynamically significant level. This makes it extremely unlikely that the r-mode instability plays a significant role in any real white dwarf stars.Comment: 5 Pages, 5 Figures, revte

    Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars

    Get PDF
    We explore the effects on nucleosynthesis in Type II supernovae of various parameters (mass cut, neutron excess, explosion energy, progenitor mass) in order to explain the observed trends of the iron-peak element abundance ratios ([Cr/Fe], [Mn/Fe], [Co/Fe] and [Ni/Fe]) in halo stars as a function of metallicity for the range −4≀ -4 \le [Fe/H] ≀−2.5\le -2.5. [Cr/Fe] and [Mn/Fe] decrease with decreasing [Fe/H], while [Co/Fe] behaves the opposite way and increases. We show that such a behavior can be explained by a variation of mass cuts in Type II supernovae as a function of progenitor mass, which provides a changing mix of nucleosynthesis from an alpha-rich freeze-out of Si-burning and incomplete Si-burning. This explanation is consistent with the amount of ejected 56^{56}Ni determined from modeling the early light curves of individual supernovae. We also suggest that the ratio [H/Fe] of halo stars is mainly determined by the mass of interstellar hydrogen mixed with the ejecta of a single supernova which is larger for larger explosion energy and the larger Str\"omgren radius of the progenitor.Comment: 17 pages, LaTeX, Accepted for publication in the Astrophysical Journal, more discussion on the Galactic chemical evolutio

    The Type Ic SN 2007gr: a census of the ejecta from late-time optical-infrared spectra

    Full text link
    Nebular spectra of Supernovae (SNe) offer an unimpeded view of the inner region of the ejecta, where most nucleosynthesis takes place. Optical spectra cover most, but not all of the emitting elements, and therefore offer only a partial view of the products of the explosion. Simultaneous optical-infrared spectra, on the other hand, contain emission lines of all important elements, from C and O through to the Intermediate Mass Elements (IME) Mg, Si, S, Ca, and to Fe and Ni. In particular, Si and S are best seen in the IR. The availability of IR data makes it possible to explore in greater detail the results of the explosion. SN\,2007gr is the first Type Ic SN for which such data are available. Modelling the spectra with a NLTE code reveals that the inner ejecta contain \sim 1 \Msun of material within a velocity of ≈4500\approx 4500\,\kms. %The spectrum is powered by \Nifs, in an amount (0.076 \Msun) consistent with that %derived from the early-time data. The same mass of \Nifs\ derived from the light curve peak (0.076 \Msun) was used to power the spectrum, yielding consistent results. Oxygen is the dominant element, contributing \sim 0.8 \Msun. The C/O ratio is <0.2< 0.2. IME account for \sim 0.1 \Msun. This confirms that SN\,2007gr was the explosion of a low-mass CO core, probably the result of a star of main-sequence mass \approx 15 \Msun. The ratios of the \CaII\ lines, and of those of \FeII, are sensitive to the assumed degree of clumping. In particular, the optical lines of [\FeII] become stronger, relative to the IR lines, for higher degrees of clumping

    Neutrino-driven Explosions

    Full text link
    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. A solution is crucial for deciphering the SN phenomenon, for predicting observable signals such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational waves, for defining the role of SNe in the evolution of galaxies, and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the SN in the explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core-bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN blast. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next Galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 54 pages, 13 figure

    The Possible White Dwarf-Neutron Star Connection

    Get PDF
    The current status of the problem of whether neutron stars can form, in close binary systems, by accretion-induced collapse (AIC) of white dwarfs is examined. We find that, in principle, both initially cold C+O white dwarfs in the high-mass tail of their mass distribution in binaries and O+Ne+Mg white dwarfs can produce neutron stars. Which fractions of neutron stars in different types of binaries (or descendants from binaries) might originate from this process remains uncertain.Comment: 6 pages. To appear in "White Dwarfs", ed. J. Isern, M. Hernanz, and E. Garcia-Berro (Dordrecht: Kluwer

    Disc instability in RS Ophiuchi: a path to Type Ia supernovae?

    Full text link
    We study the stability of disc accretion in the recurrent nova RS Ophiuchi. We construct a one-dimensional time-dependent model of the binary-disc system, which includes viscous heating and radiative cooling and a self-consistent treatment of the binary potential. We find that the extended accretion disc in this system is always unstable to the thermal-viscous instability, and undergoes repeated disc outbursts on ~10-20yr time-scales. This is similar to the recurrence time-scale of observed outbursts in the RS Oph system, but we show that the disc's accretion luminosity during outburst is insufficient to explain the observed outbursts. We explore a range of models, and find that in most cases the accretion rate during outbursts reaches or exceeds the critical accretion rate for stable nuclear burning on the white dwarf surface. Consequently we suggest that a surface nuclear burning triggered by disc instability may be responsible for the observed outbursts. This allows the white dwarf mass to grow over time, and we suggest that disc instability in RS Oph and similar systems may represent a path to Type Ia supernovae.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Carbon-poor stellar cores as supernova progenitors

    Full text link
    Exploring stellar models which ignite carbon off-center (in the mass range of about 1.05 - 1.25 Msun, depending on the carbon mass fraction) we find that they may present an interesting SN I progenitor scenario, since whereas in the standard scenario runaway always takes place at the same density of about 2 X 10^9 gr/cm^3, in our case, due to the small amount of carbon ignited, we get a whole range of densities from 1 X 10^9 up to 6 X 10^9 gr/cm^3. These results could contribute in resolving the emerging recognition that at least some diversity among SNe I exists, since runaway at various central densities is expected to yield various outcomes in terms of the velocities and composition of the ejecta, which should be modeled and compared to observations.Comment: 49 pages, 20 figure
    • 

    corecore