320 research outputs found

    Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: current status and challenges

    Get PDF
    The use of engineered nanoparticles (ENPs) in a wide range of products is associated with an increased concern for environmental safety due to their potential toxicological and adverse effects. ENPs exert antimicrobial properties through different mechanisms such as the formation of reactive oxygen species, disruption of physiological and metabolic processes. Although there are little empirical evidences on environmental fate and transport of ENPs, biosolids in wastewater most likely would be a sink for ENPs. However, there are still many uncertainties in relation to ENPs impact on the biological processes during wastewater treatment. This review provides an overview of the available data on the plausible effects of ENPs on AS and AD processes, two key biologically relevant environments for understanding ENPs–microbial interactions. It indicates that the impact of ENPs is not fully understood and few evidences suggest that ENPs could augment microbial-mediated processes such as AS and AD. Further to this, wastewater components can enhance or attenuate ENPs effects. Meanwhile it is still difficult to determine effective doses and establish toxicological guidelines, which is in part due to variable wastewater composition and inadequacy of current analytical procedures. Challenges associated with toxicity evaluation and data interpretation highlight areas in need for further research studies

    Coastal management and disaster planning on the basis of flood risk calculations

    Get PDF
    Recent studies showed that one third of the Belgian coastline is not sufficiently protected against severe storm events. Therefore coastal protection plans are set up to assure a minimum safety standard for the entire coastline. Flood risk calculations constitute the main input parameter for the concept and planning phases. Since 100% safety can never be guaranteed, contingency plans are constructed to reduce the remaining flood risks. Flood risk calculations are a powerful communicative and operational instrument to use between engineers and experts on the field, thus forming the link between coastal management and disaster planning

    When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining

    Get PDF
    Flow cytometry is increasingly employed by drinking water providers. Its use with appropriate fluorescent stains allows the distinction between intact and membrane-damaged bacteria, which makes it ideally suited for assessment of disinfection efficiency. In contrast to plate counting, the technology allows the visualization of the gradual loss of membrane integrity. Although this sensitivity per se is very positive, it creates the problem of how this detailed viability information compares with binary plate counts where a colony is either formed or not. Guidelines are therefore needed to facilitate interpretation of flow cytometry results and to determine a degree of membrane damage where bacteria can be considered ‘dead’. In this study we subjected Escherichia coli and environmental microorganisms in real water to increasing chlorine concentrations. Resulting flow cytometric patterns after membrane integrity staining were compared with culturability and in part with redox activity. For laboratory-grown bacteria, culturability was lost at lower disinfectant concentrations than membrane integrity making the latter a conservative viability parameter. No recovery from chlorine was observed for four days. For real water, loss of membrane integrity had to be much more substantial to completely suppress colony formation, probably due to the heterogenic composition of the natural microbial community with different members having different susceptibilities to the disinfectant

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo

    Design of simple synthetic RNA thermometers for temperature-controlled gene expression in Escherichia coli

    Get PDF
    RNA thermometers are thermosensors that regulate gene expression by temperature-induced changes in RNA conformation. Naturally occurring RNA thermometers exhibit complex secondary structures which are believed to undergo a series of gradual structural changes in response to temperature shifts. Here, we report the de novo design of considerably simpler RNA thermometers that provide useful RNA-only tools to regulate bacterial gene expression by a shift in the growth temperature. We show that a single small stem-loop structure containing the ribosome binding site is sufficient to construct synthetic RNA thermometers that work efficiently at physiological temperatures. Our data suggest that the thermometers function by a simple melting mechanism and thus provide minimum size on/off switches to experimentally induce or repress gene expression by temperature

    Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products

    Get PDF
    We developed a low-cost, high-throughput microbiome profiling method that uses combinatorial sequence tags attached to PCR primers that amplify the rRNA V6 region. Amplified PCR products are sequenced using an Illumina paired-end protocol to generate millions of overlapping reads. Combinatorial sequence tagging can be used to examine hundreds of samples with far fewer primers than is required when sequence tags are incorporated at only a single end. The number of reads generated permitted saturating or near-saturating analysis of samples of the vaginal microbiome. The large number of reads al- lowed an in-depth analysis of errors, and we found that PCR-induced errors composed the vast majority of non-organism derived species variants, an ob- servation that has significant implications for sequence clustering of similar high-throughput data. We show that the short reads are sufficient to assign organisms to the genus or species level in most cases. We suggest that this method will be useful for the deep sequencing of any short nucleotide region that is taxonomically informative; these include the V3, V5 regions of the bac- terial 16S rRNA genes and the eukaryotic V9 region that is gaining popularity for sampling protist diversity.Comment: 28 pages, 13 figure

    In Vitro Cultivation of 'Unculturable' Oral Bacteria, Facilitated by Community Culture and Media Supplementation with Siderophores

    Get PDF
    Over a third of oral bacteria are as-yet-uncultivated in-vitro. Siderophores have been previously shown to enable in-vitro growth of previously uncultivated bacteria. The objective of this study was to cultivate novel oral bacteria in siderophore-supplemented culture media. Various compounds with siderophore activity, including pyoverdines-Fe-complex, desferricoprogen and salicylic acid, were found to stimulate the growth of difficult-to-culture strains Prevotella sp. HOT-376 and Fretibacterium fastidiosum. Furthermore, pyrosequencing analysis demonstrated increased proportions of the as-yet-uncultivated phylotypes Dialister sp. HOT-119 and Megasphaera sp. HOT-123 on mixed culture plates supplemented with siderophores. Therefore a culture model was developed, which incorporated 15 μg siderophore (pyoverdines-Fe-complex or desferricoprogen) or 150 μl neat subgingival-plaque suspension into a central well on agar plates that were inoculated with heavily-diluted subgingival-plaque samples from subjects with periodontitis. Colonies showing satellitism were passaged onto fresh plates in co-culture with selected helper strains. Five novel strains, representatives of three previously-uncultivated taxa (Anaerolineae bacterium HOT-439, the first oral taxon from the Chloroflexi phylum to have been cultivated; Bacteroidetes bacterium HOT-365; and Peptostreptococcaceae bacterium HOT-091) were successfully isolated. All novel isolates required helper strains for growth, implying dependence on a biofilm lifestyle. Their characterisation will further our understanding of the human oral microbiome

    C-terminal UBA domains protect ubiquitin receptors by preventing initiation of protein degradation

    Get PDF
    The ubiquitin receptors Rad23 and Dsk2 deliver polyubiquitylated substrates to the proteasome for destruction. The C-terminal ubiquitin-associated (UBA) domain of Rad23 functions as a cis-acting stabilization signal that protects this protein from proteasomal degradation. Here, we provide evidence that the C-terminal UBA domains guard ubiquitin receptors from destruction by preventing initiation of degradation at the proteasome. We show that introduction of unstructured polypeptides that are sufficiently long to function as initiation sites for degradation abrogates the protective effect of UBA domains. Vice versa, degradation of substrates that contain an unstructured extension can be attenuated by the introduction of C-terminal UBA domains. Our study gains insight into the molecular mechanism responsible for the protective effect of UBA domains and explains how ubiquitin receptors can shuttle substrates to the proteasome without themselves becoming subject to proteasomal degradation

    Regulation of the High Affinity IgE Receptor (FcεRI) in Human Neutrophils: Role of Seasonal Allergen Exposure and Th-2 Cytokines

    Get PDF
    The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma

    A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells

    Get PDF
    Copyright: © 2018 Bankier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS: Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS: Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION: Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.Peer reviewe
    corecore