2,626 research outputs found
Pulse profiles from thermally emitting neutron stars
The problem of computing the pulse profiles from thermally emitting spots on
the surface of a neutron star in general relativity is reconsidered. We show
that it is possible to extend Beloborodov (2002) approach to include (multiple)
spots of finite size in different positions on the star surface. Results for
the pulse profiles are expressed by comparatively simple analytical formulas
which involve only elementary functions.Comment: 8 pages, 6 figures, accepted for publication in Ap
On the Mathematical Character of the Relativistic Transfer Moment Equations
General--relativistic, frequency--dependent radiative transfer in spherical,
differentially--moving media is considered. In particular we investigate the
character of the differential operator defined by the first two moment
equations in the stationary case. We prove that the moment equations form a
hyperbolic system when the logarithmic velocity gradient is positive, provided
that a reasonable condition on the Eddington factors is met. The operator,
however, may become elliptic in accretion flows and, in general, when gravity
is taken into account. Finally we show that, in an optically thick medium, one
of the characteristics becomes infinite when the flow velocity equals . Both high--speed, stationary inflows and outflows may therefore
contain regions which are ``causally'' disconnected.Comment: 16 pages, PlainTex, accepted for publication in MNRA
Dynamical Comptonization in spherical flows: black hole accretion and stellar winds
The transport of photons in steady, spherical, scattering flows is
investigated. The moment equations are solved analytically for accretion onto a
Schwarzschild black hole, taking into full account relativistic effects. We
show that the emergent radiation spectrum is a power law at high frequencies
with a spectral index smaller (harder spectrum) than in the non--relativistic
case. Radiative transfer in an expanding envelope is also analyzed. We find
that adiabatic expansion produces a drift of injected monochromatic photons
towards lower frequencies and the formation of a power--law, low--energy tail
with spectral index .Comment: 11 pages with 3 ps figures, MNRAS to appea
An unified timing and spectral model for the Anomalous X-ray Pulsars XTE J1810-197 and CXOU J164710.2-455216
Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs) are two small
classes of X-ray sources strongly suspected to host a magnetar, i.e. an
ultra-magnetized neutron star with $B\approx 10^14-10^15 G. Many SGRs/AXPs are
known to be variable, and recently the existence of genuinely "transient"
magnetars was discovered. Here we present a comprehensive study of the pulse
profile and spectral evolution of the two transient AXPs (TAXPs) XTE J1810-197
and CXOU J164710.2-455216. Our analysis was carried out in the framework of the
twisted magnetosphere model for magnetar emission. Starting from 3D Monte Carlo
simulations of the emerging spectrum, we produced a large database of synthetic
pulse profiles which was fitted to observed lightcurves in different spectral
bands and at different epochs. This allowed us to derive the physical
parameters of the model and their evolution with time, together with the
geometry of the two sources, i.e. the inclination of the line-of-sight and of
the magnetic axis with respect to the rotation axis. We then fitted the
(phase-averaged) spectra of the two TAXPs at different epochs using a model
similar to that used to calculate the pulse profiles ntzang in XSPEC) freezing
all parameters to the values obtained from the timing analysis, and leaving
only the normalization free to vary. This provided acceptable fits to
XMM-Newton data in all the observations we analyzed. Our results support a
picture in which a limited portion of the star surface close to one of the
magnetic poles is heated at the outburst onset. The subsequent evolution is
driven both by the cooling/varying size of the heated cap and by a progressive
untwisting of the magnetosphere.Comment: 15 pages, 12 figures, accepted for publication in Ap
The chaotic behavior of the black hole system GRS 1915+105
A modified non-linear time series analysis technique, which computes the
correlation dimension , is used to analyze the X-ray light curves of the
black hole system GRS 1915+105 in all twelve temporal classes. For four of
these temporal classes saturates to which indicates that
the underlying dynamical mechanism is a low dimensional chaotic system. Of the
other eight classes, three show stochastic behavior while five show deviation
from randomness. The light curves for four classes which depict chaotic
behavior have the smallest ratio of the expected Poisson noise to the
variability () while those for the three classes which depict
stochastic behavior is the highest (). This suggests that the temporal
behavior of the black hole system is governed by a low dimensional chaotic
system, whose nature is detectable only when the Poisson fluctuations are much
smaller than the variability.Comment: Accepted for publication in Astrophysical Journa
Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes
Recent theoretical work suggests that violation of the Equivalence Principle
might be revealed in a measurement of the fractional differential acceleration
between two test bodies -of different composition, falling in the
gravitational field of a source mass- if the measurement is made to the level
of or better. This being within the reach of ground based
experiments, gives them a new impetus. However, while slowly rotating torsion
balances in ground laboratories are close to reaching this level, only an
experiment performed in low orbit around the Earth is likely to provide a much
better accuracy.
We report on the progress made with the "Galileo Galilei on the Ground" (GGG)
experiment, which aims to compete with torsion balances using an instrument
design also capable of being converted into a much higher sensitivity space
test.
In the present and following paper (Part I and Part II), we demonstrate that
the dynamical response of the GGG differential accelerometer set into
supercritical rotation -in particular its normal modes (Part I) and rejection
of common mode effects (Part II)- can be predicted by means of a simple but
effective model that embodies all the relevant physics. Analytical solutions
are obtained under special limits, which provide the theoretical understanding.
A simulation environment is set up, obtaining quantitative agreement with the
available experimental data on the frequencies of the normal modes, and on the
whirling behavior. This is a needed and reliable tool for controlling and
separating perturbative effects from the expected signal, as well as for
planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan
16, 2006. 16 2-column pages, 9 figure
Characterization of humic fractions in leachates from soil under organic and conventional management and their interactions with the root zone
Humic fractions were shown to be closely involved in gene expression
and promotion of different PM H+-ATPase isoforms, as well as in lateral root
development, indicating an enhanced nutrient absorption capacity of the plant
root system. HPLC-SEC confirmed that water-soluble humic substances (WSHS)
correspond to a subfraction of the fulvic fraction of humic substances. This was
supported by E465/E665 ratios higher than 8.5. These ratios generally increased over
the growing season in cultivated soils but showed significant differences between
conventionally and organically managed bare soils. FTIR data and the analytical
quantification of carboxyls confirmed relevant structural changes in bare soil under
both organic and conventional farming management. Absorption intensities ratios
at 1,590\u20131,570 cm-1 and 1,440\u20131,380 cm-1 showed the predominant aliphatic
character of these molecules
Characterization of humic fractions in leachates from soil under organic and conventional management and their interactions with the root zone
Humic fractions were shown to be closely involved in gene expression
and promotion of different PM H+-ATPase isoforms, as well as in lateral root
development, indicating an enhanced nutrient absorption capacity of the plant
root system. HPLC-SEC confirmed that water-soluble humic substances (WSHS)
correspond to a subfraction of the fulvic fraction of humic substances. This was
supported by E465/E665 ratios higher than 8.5. These ratios generally increased over
the growing season in cultivated soils but showed significant differences between
conventionally and organically managed bare soils. FTIR data and the analytical
quantification of carboxyls confirmed relevant structural changes in bare soil under
both organic and conventional farming management. Absorption intensities ratios
at 1,590–1,570 cm-1 and 1,440–1,380 cm-1 showed the predominant aliphatic
character of these molecules
The GRAAL high resolution BGO calorimeter and its energy calibration and monitoring system
We describe the electromagnetic calorimeter built for the GRAAL apparatus at
the ESRF. Its monitoring system is presented in detail. Results from tests and
the performance obtained during the first GRAAL experiments are given. The
energy calibration accuracy and stability reached is a small fraction of the
intrinsic detector resolution.Comment: 19 pages, 14 figures, submitted to Nuclear Instruments and Method
- …
