111 research outputs found

    On the relativistic origin of the kink effect in the chain of Pb isotopes

    Get PDF
    We investigate the origin of the kink effect (KE) in the relativistic mean field theory by transforming the single-particle Dirac equation into a Schrodinger-like equation. It is found that relativistic self-consistent effects as well as contributions from the rho meson determine the actual structure of the KE. However, the spin-orbit force generated by the rho meson has no significant influence on the KE.Comment: 11 pages, RevTeX, 3 postscript figs., Phys. Lett.

    Instabilities of infinite matter with effective Skyrme-type interactions

    Get PDF
    The stability of the equation of state predicted by Skyrme-type interactions is examined. We consider simultaneously symmetric nuclear matter and pure neutron matter. The stability is defined by the inequalities that the Landau parameters must satisfy simultaneously. A systematic study is carried out to define interaction parameter domains where the inequalities are fulfilled. It is found that there is always a critical density ρcr\rho_{cr} beyond which the system becomes unstable. The results indicate in which parameter regions one can find effective forces to describe correctly finite nuclei and give at the same time a stable equation of state up to densities of 3-4 times the saturation density of symmetric nuclear matter.Comment: 20 pages, 5 figures, submitted to Phys.Rev.

    Realistic Neutrino Opacities for Supernova Simulations With Correlations and Weak Magnetism

    Full text link
    Advances in neutrino transport allow realistic neutrino interactions to be incorporated into supernova simulations. We add tensor couplings to relativistic RPA calculations of neutrino opacities. Our results reproduce free-space neutrino-nucleon cross sections at low density, including weak magnetism and recoil corrections. In addition, our opacities are thermodynamically consistent with relativistic mean field equations of state. We find antineutrino mean free paths that are considerably larger then those for neutrinos. This difference depends little on density. In a supernova, this difference could lead to an average energy of ΜˉΌ\bar\nu_\mu that is larger than that for ΜΌ\nu_\mu by an amount that is comparable to the energy difference between ΜΌ\nu_\mu and Μˉe\bar\nu_eComment: 15 pages, 10 figures, submitted to PRC, minor changes to figs. (9,10

    Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field

    Full text link
    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities and including products of six and eight fermion fields. This type of NLSI corresponds to the zero range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies strongly density-dependent. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes

    Regional development gaps in Argentina: A multidimensional approach to identify the location of policy priorities

    Get PDF
    Spatial inequalities within Latin American countries have historically attracted the interest ofacademics, policy-makers, and international agencies. This article aims to provide amultidimensional diagnosis of provincial development gaps in Argentina, in order to identifythe location of policy priorities. Therefore, we built a large database, which covers sevendevelopment dimensions, and applied multivariate analysis techniques to overcome someanalytical limitations of previous studies. Results show the stability of provincial developmentgaps between 2003 and 2013 and some heterogeneity within geographic regions. Instead,cluster analysis offers a better classification of Argentine provinces according to theirdevelopment gaps, which can help the government to prioritize the places wheredevelopment policies are strategic.Fil: Niembro, Andrés Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Sarmiento, Jesica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentin

    Neutrino Opacities in Neutron Stars with Kaon Condensates

    Get PDF
    The neutrino mean free paths in hot neutron-star matter are obtained in the presence of kaon condensates. The kaon-induced neutrino absorption process, which is allowed only in the presence of kaon condensates, is considered for both nondegenerate and degenerate neutrinos. The neutrino mean free path due to this process is compared with that for the neutrino-nucleon scattering. While the mean free path for the kaon-induced neutrino absorption process is shown to be shorter than the ordinary two-nucleon absorption process by several orders of magnitude when temperature is not very high, the neutrino-nucleon scattering process has still a dominant contribution to the neutrino opacity. Thus, the kaon-induced neutrino absorption process has a minor effect on the thermal and dynamical evolution of protoneutron stars.Comment: 35 pages, 4 figure

    Neutrino propagation and spin zero sound in hot neutron matter with Skyrme interactions

    Get PDF
    We present microscopic calculations of neutrino propagation in hot neutron matter above nuclear density within the framework of the Random Phase Approximation . Calculations are performed for non- degenerate neutrinos using various Skyrme effective interactions. We find that for densities just above nuclear density, spin zero sound is present at zero temperature for all Skyrme forces considered. However it disappears rapidly with increasing temperature due to a strong Landau damping. As a result the mean-free path is given, to a good approximation, by the mean field value. Because of the renormalization of the bare mass in the mean field, the medium is more transparent as compared to the free case. We find, in contrast, that at several times nuclear density, a new type of behavior sets in due to the vicinity of a magnetic instability. It produces a strong reduction of the mean free path. The corresponding transition density however occurs in a region where inputs from more realistic calculations are necessary for the construction of a reliable Skyrme type parametrization.Comment: 17 pages, 4 figure

    Parker solar probe: four years of discoveries at solar cycle minimum

    Get PDF
    Launched on 12 Aug. 2018, NASA’s Parker Solar Probe had completed 13 of its scheduled 24 orbits around the Sun by Nov. 2022. The mission’s primary science goal is to determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Parker Solar Probe returned a treasure trove of science data that far exceeded quality, significance, and quantity expectations, leading to a significant number of discoveries reported in nearly 700 peer-reviewed publications. The first four years of the 7-year primary mission duration have been mostly during solar minimum conditions with few major solar events. Starting with orbit 8 (i.e., 28 Apr. 2021), Parker flew through the magnetically dominated corona, i.e., sub-AlfvĂ©nic solar wind, which is one of the mission’s primary objectives. In this paper, we present an overview of the scientific advances made mainly during the first four years of the Parker Solar Probe mission, which go well beyond the three science objectives that are: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles
    • 

    corecore