3,662 research outputs found

    Type I singularities and the Phantom Menace

    Full text link
    We consider the future dynamics of a transient phantom dominated phase of the universe in LQC and in the RS braneworld, which both have a non-standard Friedmann equation. We find that for a certain class of potentials, the Hubble parameter oscillates with simple harmonic motion in the LQC case and therefore avoids any future singularity. For more general potentials we find that damping effects eventually lead to the Hubble parameter becoming constant. On the other hand in the braneworld case we find that although the type I singularity can be avoided, the scale factor still diverges at late times.Comment: More references added. Final PRD versio

    Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent

    Get PDF
    Interference-based forgetting occurs when new information acquired either before or after a learning event attenuates memory expression (proactive and retroactive interference, respectively). Multiple learning events often occur in rapid succession, leading to competition between consolidating memories. However, it is unknown what factors determine which memory is remembered or forgotten. Here, we challenge the snail, Lymnaea, to acquire two consecutive similar or different memories and identify learning-induced changes in neurons of its well-characterized motor circuits. We show that when new learning takes place during a stable period of the original memory, proactive interference only occurs if the two consolidating memories engage the same circuit mechanisms. If different circuits are used, both memories survive. However, any new learning during a labile period of consolidation promotes retroactive interference and the acquisition of the new memory. Therefore, the effect of interference depends both on the timing of new learning and the underlying neuronal mechanisms

    Perturbations on steady spherical accretion in Schwarzschild geometry

    Full text link
    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur

    Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity

    Full text link
    The dynamics of interacting dark energy model in loop quantum cosmology (LQC) is studied in this paper. The dark energy has a constant equation of state wxw_x and interacts with dark matter through a form 3cH(ρx+ρm)3cH(\rho_x+\rho_m). We find for quintessence model (wx>1w_x>-1) the cosmological evolution in LQC is the same as that in classical Einstein cosmology; whereas for phantom dark energy (wx<1w_x<-1), although there are the same critical points in LQC and classical Einstein cosmology, loop quantum effect reduces significantly the parameter spacetime (c,wxc, w_x) required by stability. If parameters cc and wxw_x satisfy the conditions that the critical points are existent and stable, the universe will enter an era dominated by dark energy and dark matter with a constant energy ratio between them, and accelerate forever; otherwise it will enter an oscillatory regime. Comparing our results with the observations we find at 1σ1\sigma confidence level the universe will accelerate forever.Comment: 15 pages, 8 figures, to appear in JCA

    Coupled dark energy: Towards a general description of the dynamics

    Full text link
    In dark energy models of scalar-field coupled to a barotropic perfect fluid, the existence of cosmological scaling solutions restricts the Lagrangian of the field \vp to p=X g(Xe^{\lambda \vp}), where X=-g^{\mu\nu} \partial_\mu \vp \partial_\nu \vp /2, λ\lambda is a constant and gg is an arbitrary function. We derive general evolution equations in an autonomous form for this Lagrangian and investigate the stability of fixed points for several different dark energy models--(i) ordinary (phantom) field, (ii) dilatonic ghost condensate, and (iii) (phantom) tachyon. We find the existence of scalar-field dominant fixed points (\Omega_\vp=1) with an accelerated expansion in all models irrespective of the presence of the coupling QQ between dark energy and dark matter. These fixed points are always classically stable for a phantom field, implying that the universe is eventually dominated by the energy density of a scalar field if phantom is responsible for dark energy. When the equation of state w_\vp for the field \vp is larger than -1, we find that scaling solutions are stable if the scalar-field dominant solution is unstable, and vice versa. Therefore in this case the final attractor is either a scaling solution with constant \Omega_\vp satisfying 0<\Omega_\vp<1 or a scalar-field dominant solution with \Omega_\vp=1.Comment: 21 pages, 5 figures; minor clarifications added, typos corrected and references updated; final version to appear in JCA

    Curvaton Dynamics in Brane-worlds

    Get PDF
    We study the curvaton dynamics in brane-world cosmologies. Assuming that the inflaton field survives without decay after the end of inflation, we apply the curvaton reheating mechanism to Randall-Sundrum and to its curvature corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and induced gravity cosmological models. In the case of chaotic inflation and requiring suppression of possible short-wavelength generated gravitational waves, we constraint the parameters of a successful curvaton brane-world cosmological model. If density perturbations are also generated by the curvaton field then, the fundamental five-dimensional mass could be much lower than the Planck massComment: 47 pages, 1 figure, references added, to be published in JCA

    A Quintessentially Geometric Model

    Full text link
    We consider string inspired cosmology on a solitary D3D3-brane moving in the background of a ring of branes located on a circle of radius RR. The motion of the D3D3-brane transverse to the plane of the ring gives rise to a radion field which can be mapped to a massive non-BPS Born-Infeld type field with a cosh potential. For certain bounds of the brane tension we find an inflationary phase is possible, with the string scale relatively close to the Planck scale. The relevant perturbations and spectral indices are all well within the expected observational bounds. The evolution of the universe eventually comes to be dominated by dark energy, which we show is a late time attractor of the model. However we also find that the equation of state is time dependent, and will lead to late time Quintessence.Comment: 11 pages, 3 figures. References and comments adde

    Loop Quantum Cosmology: A Status Report

    Get PDF
    The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical and Quantum Gravity. Typos corrected, clarifications and references adde

    Probing the Stochastic Dynamics of Coronaviruses: Machine Learning Assisted Deep Computational Insights with Exploitable Dimensions

    Get PDF
    A machine learning assisted efficient, yet comprehensive characterization ofthe dynamics of coronaviruses, in conjunction with finite element (FE)approach, is presented. Without affecting the accuracy of prediction inlow-frequency vibration analysis, an equivalent model for the FE analysis isproposed, based on which the natural frequencies corresponding to first threenon-rigid modes are analyzed. To quantify the inherent system-uncertaintyefficiently, Monte Carlo simulation is proposed in conjunction with themachine learning based FE computational framework for obtaining completeprobabilistic descriptions considering both individual and compound effect ofstochasticity. A variance based sensitivity analysis is carried out to enumeratethe relative significance of different material parameters corresponding tovarious constituting parts of the coronavirus structure. Using the modalcharacteristics like natural frequencies and mode shapes of the virus structureincluding their stochastic bounds, it is possible to readily identifycoronaviruses by comparing the experimentally measured dynamic responsesin terms of the peaks of frequency response function. Results from this first ofits kind study on coronaviruses along with the proposed generic machinelearning based approach will accelerate the detection of viruses and createefficient pathways toward future inventions leading to cure and containmentin the field of virology

    Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century?

    Get PDF
    The total blue carbon stock of the Bangladesh Sundarban mangroves was evaluated and the probable future status after a century was predicted based on the recent trend of changes in the last 30 years and implementing a hybrid model of Markov Chain and Cellular automata. At present 36.24 Tg C and 54.95 Tg C are stored in the above-ground and below-ground compartments respectively resulting in total blue carbon stock of 91.19 Tg C. According to the prediction 15.88 Tg C would be lost from this region by the year 2115. The low saline species composition classes dominated mainly by Heritiera spp. accounts for the major portion of the carbon sock at present (45.60 Tg C), while the highly saline regions stores only 14.90 Tg C. The prediction shows that after a hundred years almost 22.42 Tg C would be lost from the low saline regions accompanied by an increase of 8.20 Tg C in the high saline regions dominated mainly by Excoecaria sp. and Avicennia spp. The net carbon loss would be due to both mangrove area loss (~ 510 km2) and change in species composition leading to 58.28 Tg of potential CO2 emission within the year 2115
    corecore