585 research outputs found

    Enforced neutrality and color-flavor unlocking in the three-flavor Polyakov-loop NJL model

    Get PDF
    We study how the charge neutrality affects the phase structure of three-flavor PNJL model. We point out that, within the conventional PNJL model at finite density the color neutrality is missing because the Wilson line serves as an external ``colored'' field coupled to dynamical quarks. In this paper we heuristically assume that the model may still be applicable. To get color neutrality one has then to allow non vanishing color chemical potentials. We study how the quark matter phase diagram in (T,ms2/μ)(T,m_s^2/\mu)-plane is affected by imposing neutrality and by including the Polyakov loop dynamics. Although these two effects are correlated in a nonlinear way, the impact of the Polyakov loop turns out to be significant in the TT direction, while imposing neutrality brings a remarkable effect in the ms2/μm_s^2/\mu direction. In particular, we find a novel unlocking transition, when the temperature is increased, even in the chiral SU(3) limit. We clarify how and why this is possible once the dynamics of the colored Polyakov loop is taken into account. Also we succeed in giving an analytic expression for TcT_c for the transition from two-flavor pairing (2SC) to unpaired quark matter in the presence of the Polyakov loop.Comment: 11 pages, REVTex4, 10 eps figures; v2: added two notes, added a reference; version to appear in Phys. Rev.

    Superfluid and Pseudo-Goldstone Modes in Three Flavor Crystalline Color Superconductivity

    Full text link
    We study the bosonic excitations in the favorite cubic three flavor crystalline LOFF phases of QCD. We calculate in the Ginzburg-Landau approximation the masses of the eight pseudo Nambu-Goldstone Bosons (NGB) present in the low energy theory. We also compute the decay constants of the massless NGB Goldstones associated to superfluidity as well as those of the eight pseudo NGB. Differently from the corresponding situation in the Color-Flavor-Locking phase, we find that meson condensation phases are not expected in the present scenario.Comment: 10 pages, RevTeX4 class. Section IIIA enlarged, to appear on Phys. Rev.

    Meissner masses in the gCFL phase of QCD

    Get PDF
    We calculate the Meissner masses of gluons in neutral three-flavor color superconducting matter for finite strange quark mass. In the CFL phase the eissner masses are slowly varying function of the strange quark mass. For large strange quark mass, in the so called gCFL phase, the Meissner masses of gluons with colors a=1,2,3a=1,2,3 and 8 become imaginary, indicating an instability.Comment: New Fig. 1 shows that also the masses of the gluons 3 and 8 are imaginar

    Effective Lagrangian for Heavy and Light Mesons: Semileptonic Decays

    Full text link
    We introduce an effective lagrangian including negative and positive parity heavy mesons containing a heavy quark, light pseudoscalars, and light vector resonances, with their allowed interactions, using heavy quark spin-flavour symmetry, chiral symmetry, and the hidden symmetry approach for light vector resonances. On the basis of such a lagrangian, by considering the allowed weak currents and by including the contributions from the nearest unitarity poles we calculate the form factors for semileptonic decays of BB and DD mesons into light pseudoscalars and light vector resonances. The available data, together with some additional assumptions, allow for a set of predictions in the different semileptonic channels, which can be compared with those following {}from different approaches. A discussion of non-dominant terms in our approach, which attempts at including a rather complete dynamics, will however have to wait till more abundant data become available.Comment: LaTeX (style article), 19 pages, UGVA-DPT 1992/11-790, BARI-TH/92-12

    The s-sbar and K-Kbar nature of f_0(980) in D_s decays

    Full text link
    We examine the D_s -> f_0(980) pi amplitude through a constituent quark-meson model, incorporating heavy quark and chiral symmetries, finding a good agreement with the recent E791 data analysis of D_s -> 3pi via f_0(980). The f_0(980) resonance is considered at the moment of production as an s sbar state, later evolving to a superposition of mainly s sbar and K Kbar. The analysis is also extended to the more frequent process D_s -> phi pi.Comment: 8 pages, 5 figure
    corecore