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Abstract

We calculate the Meissner masses of gluons in neutral three-flavor color superconducting matter for finite strange qu
In the CFL phase the Meissner masses are slowly varying function of the strange quark mass. For large strange quar
the so-called gCFL phase, the Meissner masses of gluons with colorsa = 1,2 become imaginary, indicating an instability.
 2004 Elsevier B.V.

PACS: 12.38.-t

1. Introduction

At asymptotic densities cold quark matter is in the color flavor locked (CFL) phase of QCD[1] (see also[2]
and[3]). This state is characterized by nine gapped fermionic quasi-particles (3×3, for color and flavor) and by
electric neutrality even for non-vanishing quark massesMj , providedMj �= 0 does not destroy the CFL phase[4].
For lower densities, it has recently been shown[5–7] that, including the strange quark massMs , requiring electrica
and color neutrality, and imposing weak equilibrium, a phase transition occurs, from the CFL phase to a new
called gapless CFL or gCFL. In the gCFL phase seven fermionic quasi-particles have a gap in the disper
but the remaining two are gapless. At zero temperature the transition from the CFL to the gCFL phase tak
at M2

s /µb ≈ 2∆, whereµb is the quark chemical potential and∆ is the gap parameter. At non-zero temperat
the situation is more involved[7,8] and also the existence of mixed phases[9] has to be taken into account. Th
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next phase at still lower densities is difficult to determine and the crystalline color superconductive phase
candidate[10].

The aim of this Letter is to investigate the dependence of Meissner masses on the strange quark ma
gCFL phase. For two flavors a similar analysis has recently been performed by Huang and Shovkovy[11]. Im-
posing weak equilibrium and neutrality they compute the gluon Meissner mass in the 2SC phase and s
an instability arises in a certain range of values of the parameters, with some gluon masses becoming im
We present numerical evidence that a similar instability is also present in the gCFL phase. By the same
we also investigate the dependence of Meissner masses onMs in the gapped phase (CFL withMs �= 0). Our cal-
culational scheme is the high density effective theory (HDET)[12,13], which allows a significant reduction of th
computational complexity.

The plan of this Letter is as follows. In Section2 we derive the effective Lagrangian and the grand potenti
the HDET scheme. In Section3 we determine the polarization tensor for the gluons in the HDET approxima
In Section4 we present and discuss the numerical results for the Meissner masses as a function of the stran
mass. The conclusions are summarized in Section5.

2. HDET approach to the gCFL phase

Following Ref. [6] the Lagrangian for gluons and ungapped quarks withMu = Md = 0 andMs �= 0 can be
written as follows (color, flavor and spin indices suppressed):

(1)L= ψ̄(i/D − M + µγ0)ψ,

whereM = diag(0,0,Ms) is the mass matrix in flavor space and the matrix of chemical potential is given by[5]

(2)µ
αβ
ij = (µbδij − µQQij )δ

αβ + δij

(
µ3T

αβ

3 + 2√
3
µ8T

αβ

8

)

(i, j = 1,3 flavor indices;α,β = 1,3 color indices). Moreover,T3 = 1
2 diag(1,−1,0), T8 = 1

2
√

3
diag(1,1,−2) in

color space andQ = diag(2/3,−1/3,−1/3) in flavor space;µQ is the electrostatic chemical potential;µ3,µ8
are the color chemical potentials associated, respectively, to the color chargesT3 andT8; µb is quark chemica
potential which we fix to 500 MeV. As usual in the HDET, to get rid of the Dirac structure we introduce ve
dependent fields of positive (negative) energyψv(Ψv) by the Fourier decomposition[13]

(3)ψ =
∑

v

eiµbv·x(ψv + Ψv),

wherev is a unit vector representing the Fermi velocity of the quarks. Substituting the expression(3) in Eq. (1) at
the leading order inM2

s /µb we obtain the HDET Lagrangian

(4)L=
∑

v

ψ†
v

(
iV · D + δµ − M2

2µb

)
ψv − Pµνψ

†
v

(
DµDν

iṼ · D + 2µb

)
ψv,

whereV µ = (1,v), Ṽ µ = (1,−v) and

(5)Pµν = gµν − 1

2

(
V µṼ ν + Ṽ µV ν

)
.

It is clear that, at this order of approximation, the effect ofMs �= 0 is to reduce the chemical potential of the stran
quarks. Let us now define a new basisψA for the spinor fields:

(6)ψαi =
9∑

(FA)αiψA,
A=1
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where the matricesFA can be expressed by

(7)F1 = 1

3
I0 + T3 + 1√

3
T8, F2 = 1

3
I0 − T3 + 1√

3
T8, F3 = 1

3
I0 − 2√

3
T8,

(8)F4,5 = T1 ± iT2, F6,7 = T4 ± iT5, F8,9 = T6 ± iT7,

with Ta = λa/2 theSU(3) generators andI0 the identity matrix. Introducing the Nambu–Gorkov fields

(9)χA = 1√
2

(
ψv

Cψ∗−v

)
A

the kinetic part of the Lagrangian(4) reads

(10)L0 =
∑

v

χ
†
A




(
V · � + δµA − M2

A

2µb

)
δAB 0

0
(
Ṽ · � − δµA + M2

A

2µb

)
δAB


χB

where

(11)δµA = (δµru, δµgd, δµbs, δµrd, δµdu, δµrs, δµbu, δµgs, δµbd)

andM2
A = M2

s (0,0,1,0,0,1,0,1,0). If we define

(12)δµeff
A = δµA − M2

A

2µb

,

we may recast Eq.(10)as

(13)L0 =
∑

v

χ
†
A

(
(V · � + δµeff

A )δAB 0

0 (Ṽ · � − δµeff
A )δAB

)
χB,

which is formally equivalent to the Lagrangian for massless quarks with different chemical potentials.
In the gapless color-flavor-locking (gCFL) phase the symmetry breaking is induced by the condensate[5]

(14)∆
αβ
ij ≡ 〈ψiαCγ5ψβj 〉 =

3∑
I=1

∆Iε
αβI εijI

and the corresponding gap term in the Lagrangian in the mean field approximation is

(15)L∆ = −1

2
∆

αβ
ij

∑
v

ψT
αi,−vCγ5ψjβ,+v + h.c.

In the Nambu–Gorkov basis(9) the gap term reads

(16)L∆ =
∑

v

χ
†
A

(
0 −∆AB

−∆AB 0

)
χB,

where∆AB is the 9× 9 matrix defined by

(17)∆AB = −
3∑

I=1

∆I Tr
[
FT

A εIFBεI

] =




0 ∆3 ∆2 0 0 0 0 0 0
∆3 0 ∆1 0 0 0 0 0 0
∆2 ∆1 0 0 0 0 0 0 0
0 0 0 0 −∆3 0 0 0 0
0 0 0 −∆3 0 0 0 0 0
0 0 0 0 0 0 −∆2 0 0
0 0 0 0 0 −∆2 0 0 0
0 0 0 0 0 0 0 0 −∆1




.

0 0 0 0 0 0 0 −∆1 0
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From Eqs.(13) and (16)one immediately obtains the inverse fermion propagator that in momentum space is
by

(18)S−1
AB(�) =

(
(V · � + δµeff

A )δAB −∆AB

−∆AB (Ṽ · � − δµeff
A )δAB

)
.

It can be inverted to get the fermion propagator

(19)SAB(l) =
((

P∆(Ṽ · l − δµeff)∆
−1

)
AB

PAC∆CB

DAC∆CB

(
D∆(V · l + δµeff)∆

−1
)
AB

)

where

(20)P = 1

∆(Ṽ · l − δµeff)∆−1(V · l + δµeff) − ∆2

andD = P(V ↔ Ṽ , δµeff ↔ −δµeff). From the poles of the propagator we can now determine the dispersion
of the quasiparticles. The knowledge of the dispersion laws allows the evaluation of the grand potential w
the limit of zero temperature is given by

(21) = − 1

2π2

�∫
0

dpp2
9∑

j=1

∣∣εj (�‖)
∣∣ + 1

G

(
∆2

1 + ∆2
2 + ∆2

3

) − µ4
Q

12π2
,

where� is the ultraviolet cutoff,εj (�‖) are the quasi particle dispersion laws,�‖ is the quark momentum measur
from the Fermi surface (p = µb + �‖), andG is the Nambu–Jona Lasinio coupling constant. We fixG as in[5],
requiring that the value of the gap is 25 MeV forMs = 0. In order to enforce electrical and color neutrality one
to minimize the grand potential with respect toµQ,µ3 andµ8. Including the stationary conditions with respect
the gap parameters∆1,∆2,∆3 one ends up with a system of six equations which must be solved simultane
Once this system of equations is solved one may express∆1,∆2,∆3 and the chemical potentialsµQ,µ3 andµ8
as a function ofM2

s /µb. We have numerically checked that using the grand potential(21), with µb = 500 MeV
and� = 800 MeV, we recover the results of Ref.[5] with an error of 5%.

3. Polarization tensor of gluons

To compute gluon Meissner masses we evaluate the polarization tensorΠ
µν
ab (p). In the HDET approach, a

the leading order ingµb, there are two contribution to the polarization tensor: the self-energy (s.e.) diagram a
the tadpole (tad) diagram (see, e.g., Fig. 2 in[14]). To evaluate the self-energy diagram we extract the trilin
quark–gluon coupling by the minimal coupling term in the Lagrangian(4):

(22)L1 = ig
∑

v

ψ
†
iα,viV

µAa
µ(Ta)

αβψβj,v

which can be rewritten in the Nambu–Gorkov basis(9) as

(23)L1 = ig
∑

v

χ
†
A

(
i V · Aah

a
AB 0

0 −iṼ · Aah
a∗
AB

)
χB ≡ ig

∑
v

χ
†
AH̃

aµ
ABχBAa

µ,

whereha
AB = Tr[F †

AT aFB ]. Therefore the self-energy contribution to the polarization tensor is given by:

(24)iΠ
s.e.µν
ab (p) = g2µ2

b

4π3

∫
dv
4π

∫
d2�Tr

[
S(�)H̃ aµS(� + p)H̃ bν

]
.
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In order to evaluate the tadpole diagram contribution we extract the quadrilinear quark–gluon coupling from th
second term on the r.h. side of Eq.(4)

(25)L2 = −g2
∑

v

ψ†
v

TaTb

Ṽ · � + 2µb

ψvPµνA
µ
a Aν

b.

In the Nambu–Gorkov basis this term reads

(26)L2 = −g2
∑

v

χ
†
A




dab
AB

Ṽ ·�+2µb
0

0
dab∗
AB

V ·�+2µb


χBPµνA

µ
a Aν

b ≡ −g2
∑

v

χ
†
AY ab

ABχBPµνA
µ
a Aν

b,

with dab
AB = Tr[F †

AT aT bFB]. The tadpole contribution is then evaluated to be

(27)iΠ
tad,µν
ab = −2g2 4π

16π4

∫
dv
4π

Pµν

∫
d�d�‖ Tr

[
iS(l)

(
(µb + �‖)2 0

0 (µb − �‖)2

)
Y ab

]
.

Finally, in the HDET approximation, the gluon polarization tensor is given by:

(28)Π
µν
ab (p) = Π

s.e.,µν
ab (p) + Π

tad,µν
ab (p).

We note that this result for the polarization tensor is correct at the orderO(Ms/µb)
2.

4. Numerical results

The Meissner masses of the gluons are obtained by the eigenvalues of the polarization tensor(28) in the static
limit p0 = 0,p → 0. In the CFL phase withMs = 0 the Meissner masses are degenerate and one has[15,16]

(29)m2
M = µ2

bg
2

π2

(
−11

36
− 2

27
ln 2+ 1

2

)
.

For a non-zero strange quark mass the integrals in Eqs.(24) and (27)have to be evaluated numerically. InFig. 1
we present the results for the squared Meissner masses of gluons with colora = 1,2,3,8 in units ofm2

M . The
solid line denotes gluons with colora = 1,2, the short-dashed line gluons with colora = 3 and the long-dashe
line gluons witha = 8 (the physical eighth gluon is obtained by a mixing with the photon[17,18] and its mass
is only proportional to the mass of the unrotated gluon; however in the ratiom2

M(Ms)/m2
M(0) the proportionality

Fig. 1. Squared values of the Meissner masses in units ofm2
M

(see Eq.(29)) as a function ofM2
s /µb (in MeV) for gluonsa = 1,2,3,8. The

solid line denotes the gluons with colorsa = 1,2. The short-dashed line denotes the gluons with colora = 3 and the long-dashed linea = 8.
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Fig. 2. Squared values of the Meissner masses in units ofm2
M

as a function ofM2
s /µb . Dashed line denotes the gluons with colorsa = 4,5;

solid line the gluons with colorsa = 6,7.

constant cancels out). We find that increasingM2
s /µb the degeneracy in the Meissner masses is partially remo

Moreover, there is a discontinuity of the squared Meissner mass of gluons of colorsa = 1,2, which at the onse
of the gCFL phase, i.e., forM2

s /µb ∼ 2∆, drop to negative values. Thus we find an instability in the gCFL ph
analogous to the one observed by Huang and Shovkovy[11] in the g2SC case. On the other hand we note
gluons of colorsa = 3 anda = 8 are continuous positive functions ofM2

s /µb both in the CFL and gCFL phase.
In Fig. 2 we present the results for the gluons with colora = 4,5 (solid line) and colora = 6,7 (dashed

line). Also in these cases the squared Meissner mass of gluons are continuous functions ofM2
s /µb. One can

notice that, for very large values of the strange quark mass, the squared Meissner masses of these gluon
negative. However, this result is not robust because in the computation of the polarization tensor Eq.(28)we have
discarded terms of orderO(Ms/µb)

2. Therefore, to establish the instability related to the gluonsa = 4,5,6 and 7
a more accurate analysis would be needed. Also in this case, as with previousFig. 1, our results give not only th
Meissner masses in the gCFL phase, but also their dependence on the strange quark mass in the CFL phase
for M2

s /µb � 2∆.
The instability we have foundmeans that the vacuum was not correctly identified. A possible origin of the

instability is a non-vanishing vacuum expectation value (vev) of one (or more) time components of the glu
operatorAµ

a : 〈A0
a〉 �= 0 (see[19]). Clearly defining a new field operator with vanishing vev’s adds contribut

that, fora = 3,8, act as effective chemical potential terms in the Lagrangian:∼ g〈A0
a〉ψ†λaψ . The presence o

these new terms would alter previous results and may leadto real Meissner masses. We have numerically chec
that, either with〈A0

3〉 �= 0 and the other vev’s〈A0
a〉 = 0, or with 〈A0

8〉 �= 0 and the other vev’s equal to zero, o
removes the instability (numerically the non-vanishing vev’s must be of the order of∼ 10 MeV). At present the
physical mechanism at the basis of this gluon condensation is still unclear and we do not push the analysis
further since our purpose here is to indicate the instability in gCFL and not to fully discuss its antidotes (for p
relevant discussion see[20]). In any case, given the instability of the gCFL phase, other patterns of condensati
e.g., spin-one color superconductivity, should be also considered (for a recent analysis see[21] and reference
therein).

5. Conclusions

It is well established that at asymptotic large densities quark matter is in the CFL phase. At lower de
in a range presumably more relevant for the study of compact stars, neutrality, together with finite strang
mass, suggests the gCFL (gapless CFL) phase as the next occurring ground state. Our calculations in
suggest an instability of the gCFL phase, a phenomenon analogous to what observed in the two flavor cas
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instability arises because gluons of color indices 1 and 2 present an imaginary mass. Its removal may requir
different condensation pattern, most probably including gluon condensation.
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