34,498 research outputs found

    Fully Unintegrated Parton Correlation Functions and Factorization in Lowest Order Hard Scattering

    Full text link
    Motivated by the need to correct the potentially large kinematic errors in approximations used in the standard formulation of perturbative QCD, we reformulate deeply inelastic lepton-proton scattering in terms of gauge invariant, universal parton correlation functions which depend on all components of parton four-momentum. Currently, different hard QCD processes are described by very different perturbative formalisms, each relying on its own set of kinematical approximations. In this paper we show how to set up formalism that avoids approximations on final-state momenta, and thus has a very general domain of applicability. The use of exact kinematics introduces a number of significant conceptual shifts already at leading order, and tightly constrains the formalism. We show how to define parton correlation functions that generalize the concepts of parton density, fragmentation function, and soft factor. After setting up a general subtraction formalism, we obtain a factorization theorem. To avoid complications with Ward identities the full derivation is restricted to abelian gauge theories; even so the resulting structure is highly suggestive of a similar treatment for non-abelian gauge theories.Comment: 44 pages, 69 figures typos fixed, clarifications and second appendix adde

    Observational Constraints on General Relativistic Energy Conditions, Cosmic Matter Density and Dark Energy from X-Ray Clusters of Galaxies and Type-Ia Supernovae

    Get PDF
    New observational constraints on the cosmic matter density Ωm\Omega_m and an effectively redshift-independent equation of state parameter wxw_x of the dark energy are obtained while simultaneously testing the strong and null energy conditions of general relativity on macroscopic scales. The combination of REFLEX X-ray cluster and type-Ia supernova data shows that for a flat Universe the strong energy condition might presently be violated whereas the null energy condition seems to be fulfilled. This provides another observational argument for the present accelerated cosmic expansion and the absence of exotic physical phenomena related to a broken null energy condition. The marginalization of the likelihood distributions is performed in a manner to include a large fraction of the recently discussed possible systematic errors involved in the application of X-ray clusters as cosmological probes. This yields for a flat Universe, Ωm=0.290.12+0.08\Omega_m=0.29^{+0.08}_{-0.12} and wx=0.950.35+0.30w_x=-0.95^{+0.30}_{-0.35} (1σ1\sigma errors without cosmic variance). The scatter in the different analyses indicates a quite robust result around wx=1w_x=-1, leaving little room for the introduction of new energy components described by quintessence-like models or phantom energy. The most natural interpretation of the data is a positive cosmological constant with $w_x=-1 or something like it.Comment: 11 pages, 5 figures, Astron. Astrophys. (in press

    Type II superlattices for infrared detectors and devices

    Get PDF
    Superlattices consisting of combinations of III-V semiconductors with type II band alignments are of interest for infrared applications because their energy gaps can be made smaller than those of any 'natural' III-V compounds. Specifically, it has been demonstrated that both InSb/InAsxSb1-x superlattices and Ga1-xInxSb/InAs superlattices can possess energy gaps in the 8-14 mu m range. The efforts have focused on the Ga1-xInxSb/InAs system because of its extreme broken gap band alignment, which results in narrow energy gaps for very short superlattice periods. The authors report the use of in situ chemical doping of Ga1-xInxSb/InAs superlattices to fabricate p-n photodiodes. These diodes display a clear photovoltaic response with a threshold near 12 mu m. They have also attained outstanding structural quality in Ga1-xInxSb/InAs superlattices grown on radiatively heated GaSb substrates. Cross-sectional transmission electron microscope images of these superlattices display no dislocations, while high resolution X-ray diffraction scans reveal sharp high-order superlattice satellites and strong Pendellosung fringes

    Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    Get PDF
    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain)

    Single and Multiple Vortex Rings in Three-Dimensional Bose-Einstein Condensates: Existence, Stability and Dynamics

    Get PDF
    In the present work, we explore the existence, stability and dynamics of single and multiple vortex ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states, in the vicinity of the linear limit, for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance, for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particle picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. Finally, we examine some representative instability scenarios of the multi-ring dynamics including breakup and reconnections, as well as the transient formation of vortex lines.Comment: 10 pages, 8 figure

    A Note on Asymptotic Freedom at High Temperatures

    Get PDF
    This short note considers, within the external field approach outlined in hep-ph/0202026, the role of the lowest lying gluon Landau mode in QCD in the high temperature limit. Its influence on a temperature- and field-dependent running coupling constant is examined. The thermal imaginary part of the mode is temperature-independent in our approach and exactly cancels the well-known zero temperature imaginary part, thus rendering the Savvidy vacuum stable. Combining the real part of the mode with the contributions from the higher lying Landau modes and the vacuum contribution, a field-independent coupling alpha_s(T) is obtained. It can be interpreted as the ordinary zero temperature running coupling constant with average thermal momenta \approx 2pi T for gluons and \approx pi T for quarks.Comment: 4 pages; minor changes, version to appear in Phys. Rev.

    Quantum Gloves

    Full text link
    The slogan "information is physical" has been so successful that it led to some excess. Classical and quantum information can be thought of independently of any physical implementation. Pure information tasks can be realized using such abstract c- and qu-bits, but physical tasks require appropriate physical realizations of c- or qu-bits. As illustration we consider the problem of communicating chirality. We discuss in detail the physical resources this necessitates, and introduce the natural concept of "quantum gloves", i.e. rotationally invariant quantum states that encode as much as possible the concept of chirality and nothing more.Comment: 9 page

    Cooling of a Compact Star with a LOFF Matter Core

    Get PDF
    Specific heat and neutrino emissivity due to direct URCA processes for quark matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of Quantum-Chromodynamics have been evaluated. The cooling rate of simplified models of compact stars with a LOFF matter core is estimated.Comment: 3 pages, 1 figure, to appear in the proceedings of the Helmoltz International Summer School of Theoretical Physics on Dense Matter in Heavy Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 200
    corecore