38 research outputs found

    Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents

    Get PDF
    In the current work we present some pharmacological characteristics of ten new analogues of bradykinin (Arg–Pro–Pro–Gly–Phe–Ser–Pro–Phe–Arg) modified in the N-terminal part of the molecule with a variety of acyl substituents. Of the many acylating agents used previously with B2 receptor antagonists, the following residues were chosen: 1-adamantaneacetic acid (Aaa), 1-adamantanecarboxylic acid (Aca), 4-tert-butylbenzoic acid (t-Bba), 4-aminobenzoic acid (Aba), 12-aminododecanoic acid (Adc), succinic acid (Sua), 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 3-(4-hydroxyphenyl)propionic acid and 6-hydroxy-2-naphthoic acid. Biological activity of the compounds was assessed in the in vivo rat blood pressure test and the in vitro rat uterus test. Surprisingly, N-terminal substitution of the bradykinin peptide chain itself with aforementioned groups resulted in antagonists of bradykinin in the pressor test and suppressed agonistic potency in the uterotonic test. These interesting findings need further studies as they can be helpful for designing more potent B2 receptor blockers

    Expected Net Benefit of Vaccinating Rangeland Sheep against Bluetongue Virus Using a Modified-Live versus Killed Virus Vaccine

    No full text
    Recurring outbreaks of bluetongue virus in domestic sheep of the US Intermountain West have prompted questions about the economic benefits and costs of vaccinating individual flocks against bluetongue (BT) disease. We estimate the cost of a BT outbreak on a representative rangeland sheep operation in the Big Horn Basin of the state of Wyoming using enterprise budgets and stochastic simulation. The latter accounts for variability in disease severity and lamb price, as well as uncertainty about when an outbreak will occur. We then estimate the cost of purchasing and administering a BT vaccine. Finally, we calculate expected annual net benefit of vaccinating under various outbreak intervals. Expected annual net benefit is calculated for both a killed virus (KV) vaccine and modified-live virus vaccine, using an observed price of 0.32perdoseformodified−liveandanestimatedpriceof0.32 per dose for modified-live and an estimated price of 1.20 per dose for KV. The modified-live vaccine’s expected annual net benefit has a 100% chance of being positive for an outbreak interval of 5, 10, or 20 years, and a 77% chance of being positive for a 50-year interval. The KV vaccine’s expected annual net benefit has a 97% chance of being positive for a 5-year outbreak interval, and a 42% chance of being positive for a 10-year interval. A KV vaccine is, therefore, unlikely to be economically attractive to producers in areas exposed less frequently to BT disease. A modified-live vaccine, however, requires rigorous authorization before legal use can occur in Wyoming. To date, no company has requested to manufacture a modified-live vaccine for commercial use in Wyoming. The KV vaccine poses less risk to sheep reproduction and less risk of unintentional spread, both of which facilitate approval for commercial production. Yet, our results show an economically consequential tradeoff between a KV vaccine’s relative safety and higher cost. Unless the purchase price is reduced below our assumed $1.20 per dose, producer adoption of a KV vaccine for BT is likely to be low in the study area. This tradeoff between cost and safety should be considered when policymakers regulate commercial use of the two vaccine types
    corecore