23 research outputs found

    FLOW CELL STUDIES ON FOULING CAUSED BY PROTEIN -CALCIUM PHOSPHATE DEPOSITION IN TURBULENT FLOW

    Get PDF
    A comparative study of the calcium phosphate fouling process, with and without proteins, was carried out using both standard 316 2R stainless steel and 2R surfaces modified by TiN magnetron sputtering. Fouling behavior was assessed in a heat transfer flow cell operating in the turbulent flow regime. The fouling curves resulting from calcium phosphate deposition in the absence of proteins were substantially different from the ones obtained when protein was present. In this last case, two different fouling periods could be observed. The surface energy of the modified materials was found to affect the deposition parameters (rate of deposition and final amount of deposit) leading to higher amounts of deposit on higher energy surfaces in the absence of protein, while leading to less deposit in its presence. The standard 316 2R substrate proved to be less prone to fouling from protein-calcium phosphate solutions than the TiN modified surfaces. However, the same conclusion could not be drawn for calcium phosphate solutions

    Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit

    Get PDF
    Fouling in heat exchangers not only reduces heat transfer performance significantly, but also causes considerable pressure drop, resulting in higher pumping requirements. It would be much more desirable if surfaces which are inherently less prone towards fouling could be developed. In this paper, autocatalytic Nickel–Phosphorus–Polytetrafluoroethylene (Ni–P–PTFE) composite coatings and modified diamond-like carbon (DLC) coatings were applied to the coupons of the 316L stainless steel plates. The effects of surface energies of the coatings on the adhesion of aluminium silicate fouling were investigated and the best surface energy for which the fouling adhesion is lowest was obtained. The experimental results show that the coating with the most favourable surface energy reduced the adhesion of aluminium silicate deposit by 97%, compared with uncoated stainless steel plate coupons. The anti-fouling mechanism of the coatings was explained with the extended Deryagin, Landau, Verwey and Overbeek (DLVO) theor

    The magnetic model of the LHC in the early phase of beam commissioning

    Get PDF
    The relation between field and current in each family of the Large Hadron Collider magnets is modelled with a set of empirical equations (FiDeL) whose free parameters are fit on magnetic measurements. They take into account residual magnetization, persistent currents, hysteresis, saturation, decay and snapback during initial part of the ramp. Here we give a first summary of the reconstruction of the magnetic field properties based on the beam observables (orbit, tune, coupling, chromaticity) and a comparison with the expectations. The most critical issues for the machine performance in terms of knowledge of the relation magnetic field vs current are pointed out.peer-reviewe

    The Achromatic Telescopic Squeezing Scheme: Basic Principles and First Demonstration at the LHC

    No full text
    The Achromatic Telescopic Squeezing (ATS) scheme is a novel squeezing mechanism enabling the production of very low β* in circular colliders. The basic principles of the ATS scheme will be reviewed together with its strong justification for the High-Luminosity LHC Project. In this context, a few dedicated experiments with beam were meticulously prepared and took place at the LHC in 2011. The results obtained will be highlighted, demonstrating the potential of the ATS scheme for any upgrade project relying on a strong reduction of β*

    The Magnetic Model of the LHC in the Early Phase of Beam Commissioning

    Get PDF
    The relation between field and current in each family of the Large Hadron Collider magnets is modelled with a set of empirical equations (FiDeL) whose free parameters are fit on magnetic measurements. They take into account residual magnetization, persistent currents, hysteresis, saturation, decay and snapback during initial part of the ramp. Here we give a first summary of the reconstruction of the magnetic field properties based on the beam observables (orbit, tune, coupling, chromaticity) and a comparison with the expectations. The most critical issues for the machine performance in terms of knowledge of the relation magnetic field vs current are pointed out

    Electron cloud observation in LHC

    No full text
    Operation of LHC with bunch trains at different spacings has revealed the formation of an electron cloud inside the machine. The main observations of electron cloud build up are the pressure rise measured at the vacuum gauges in the warm regions, as well as the increase of the beam screen temperature in the cold regions due to an additional heat load. The effects of the electron cloud were also visible as instability and emittance growth affecting the last bunches of longer trains, which could be improved running with higher chromaticity or larger transverse emittances. A summary of the 2010 and 2011 observations and measurements and a comparison with models will be presented. The efficiency of scrubbing to improve the machine running performance will be briefly discussed
    corecore