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Abstract 

Fouling in heat exchangers not only reduces heat transfer performance significantly, but 

also causes considerable pressure drop, resulting in higher pumping requirements. It 

would be much more desirable if surfaces which are inherently less prone towards 

fouling could be developed. In this paper, autocatalytic Nickel-Phosphorus-

Polytetrafluoroethylene (Ni–P–PTFE) composite coatings and modified diamond-like 

carbon (DLC) coatings were applied to the coupons of the 316L stainless steel plates. 
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The effects of surface energies of the coatings on the adhesion of aluminium silicate 

fouling were investigated and the best surface energy for which the fouling adhesion is 

lowest was obtained. The experimental results show that the coating with the most 

favourable surface energy reduced the adhesion of aluminium silicate deposit by 97%, 

compared with uncoated stainless steel plate coupons.  The anti-fouling mechanism of 

the coatings was explained with the extended Deryagin, Landau, Verwey and Overbeek 

(DLVO) theory.  

Keywords: Fouling; Aluminium silicate; Stainless steel; Ni-P-PTFE coating; DLC coating; 

Surface energy. 

1. Introduction

Heat exchangers are broadly applied in chemical industries to transfer thermal energy 

between different fluids. However, due to the properties of the different fluids, heat 

exchangers are usually prone to fouling on the metal surfaces. Fouling not only reduces 

heat transfer performance significantly, but also causes considerable pressure drop, 

calling for higher pumping requirements [1]. For example, experimental results have 

shown that a colloidal aluminium silicate precipitate can readily form on heat exchanger 

plates due to the presence of the aluminium, calcium, silicon, and iron species dissolved 

in the plant water during the gasification of coal using a commercial Fixed-Bed Dry-

Bottom (FBDB) gasification technology [2]. The plant water typically contains 11-18ppm 

Si, 2-5ppm Al, 1-9ppm Ca, 0.1-5ppm Fe, 4-15 ppm Na, and 0.2-0.4% phenols with trace 

concentrations of K and P [2].  The formation of this gelatinous precipitate can result in 
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severe blockages of the heat exchanger plates and will eventually require unblocking 

with a toxic and highly corrosive inorganic acid. The formed gelatinous precipitate or 

deposit on the heat exchanger plates contains 71.3% SiO2, 26.8% Al2O3, 0.6% Fe2O3, 

0.03% TiO2, 0.01% P2O5, 0.12% CaO, 0.69% MgO, 0.23% Na2O and 0.17% K2O [2].  

 

It would be much more desirable if surfaces with an inherently lower affinity towards 

fouling could be developed. Many attempts have been made to reduce fouling by 

coating surfaces with Polytetrafluoroethylene (PTFE) due to its non-stickiness 

properties. However, the poor thermal conductivity, poor abrasion resistance, poor 

adhesion to metal substrate and industrial process conditions currently inhibit their 

commercial use [1]. The first electroless Ni–P–PTFE composite coatings were 

introduced about 30 years ago [3]. The incorporation of PTFE nanoparticles into the Ni–

P matrix can take advantage of the different properties of Ni–P alloy and PTFE. The 

resulting properties of electroless Ni–P–PTFE coatings, such as non-stick property, 

higher dry lubricity, lower friction, good wear and good corrosion resistance, have been 

used successfully in many industries [1]. Because the electroless Ni–P–PTFE coatings 

are metal-based, their thermal conductivity, anti-abrasive property, mechanical strength 

and adhesion strength to the substrate are superior to standard PTFE coatings [1]. Zhao 

et al. demonstrated that the Ni-P-PTFE coatings effectively reduce the formation of 

bacteria and biofilms [3,4,5], crystalline deposit [1, 6] and food deposit [7]. Diamond-like 

carbon (DLC) coatings have attracted great interest due to their excellent properties 

such as excellent thermal conductivity similar to metals, low friction, extremely smooth 

surface, hardness, wear resistance and corrosion resistance [8]. The incorporation of 

selective elements into DLC has been shown to be an effective method to inhibit fouling 
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formation. Zhao et al. showed that the doped DLC coatings with Si, F or N reduce 

bacterial attachment [9,10] and crystalline deposit [11].  Ishihara et al. [12] also 

demonstrated that the antibacterial performance of the pure DLC coatings was improved 

significantly by the incorporation of fluorine with Escherichia coli. However, to date no 

research has been reported for the use of Ni-P-PTFE coatings or DLC coatings to 

reduce aluminium silicate fouling. In this paper, autocatalytic Ni–P–PTFE composite 

coatings and modified diamond-like carbon (DLC) coatings were applied to stainless 

steel plates and the effects of surface energies of the coatings on the adhesion of 

aluminium silicate fouling were investigated at the South African solvent extraction 

plants.   

 

 

2. Experimental Procedure 

 

2.1. Ni–P–PTFE composite coatings 

 

Ni–P–PTFE coating was prepared on 2B stainless steel 316 heat exchanger plate 

coupons (200mm length X 100mm width X 0.6mm thickness) using an electroless 

plating technique. The stainless steel plate coupons were first cleaned with an alkaline 

solution at 60–80°C for 10–20 min and then rinsed with deionised water. The 

composition of the alkaline solution included 25 g/l NaOH; 30 g/l Na3PO4; 25 g/l Na2CO3 

and 5 g/l Na2SiO3. The plate coupons were dipped into a dilute hydrochloric solution (1 

M) for 30 seconds and then rinsed with cold water and deionized water, respectively. A 

60% PTFE emulsion with a particle size in the range 0.05–0.5 µm was diluted with 
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deionized water and stirred with a magnetic stirrer for 1 h. The solution was then filtered 

with a filter of pore size 0.2 µm before use. The composition of electroless Ni–P–PTFE 

solutions used in this investigation included 50 g/l NiSO4·6H2O; 60 g/l Na3C6H5O7·2H2O; 

25 g/l NaH2PO2·H2O; 40 g/l NH4CH3COO; 4–18 ml/l PTFE (60 wt %) and 0–0.6 g/l 

cationic surfactant. The PTFE contents in the coatings were altered by changing the 

concentration of PTFE emulsion in the plating bath. The coating thickness was 

measured using a digital micrometer and the coating compositions were analysed with 

an energy dispersive X-ray microanalysis (EDX) at a beam energy of 20 keV. The 

surface morphology of the coatings was analysed with a scanning electron microscope 

(SEM). The thickness of the doped Ni-P-PTFE coating was about 10 µm, which was 

controlled by the deposition time. Two types of Ni-P-PTFE coatings with 4.0 wt% PTFE 

and 5.1 wt% PTFE were prepared. 

 

2.2. Doped DLC coatings 

 

The doped DLC coatings with N, Si and F were prepared on stainless steel 316 

stainless steel plate coupons by plasma-enhanced chemical vapour deposition 

technique. The stainless steel plate coupons were cleaned in an ultrasonic bath 

containing acetone for 10 min, rinsed with distilled water and dried before coating.  The 

substrates were further cleaned by Ar+ bombardment prior to deposition.  Acetylene 

was used as the process gas for the DLC coating. The N-doped, Si-doped and F-doped 

DLC coatings were produced by introducing nitrogen, tetramethylsilane and 

tetrafluoromethane, respectively. The N, Si or F contents in the DLC coatings were 

altered by changing the gas flow rate of nitrogen, tetramethylsilane or 
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tetrafluoromethane, respectively in the range between 0 sccm and 10 sccm (standard 

cubic centimetres per minute). The thickness of the doped DLC coatings was about 1 

µm, which was controlled by the deposition time. The N, Si or F content in the DLC 

coatings was analyzed by EDX.  The doped DLC coatings with 1.6% N, 4.1% N, 8.1% 

N, 7.0% Si, 5% F and 15% F were prepared. Standard DLC coatings were also 

prepared as a control. 

 

2.3. Contact angle measurements 

 

Prior to contact angle measurement, the coatings were ultrasonically cleaned in 

acetone, ethanol and deionized water in sequence. Contact angles were obtained using 

the sessile drop method with a Data physics OCA-20 contact angle analyser with an 

accuracy of ± 0.1 °.  Three test liquids were used as a probe for surface free energy 

calculations: distilled water, di-iodomethane and ethylene glycol. The data for surface 

tension components of the test liquids are given in Table 1 [13]. 6 measurements per 

test liquid were performed to determine the contact angles and the mean contact angles 

and the corresponding standard deviation were given in Table 2.  The contact angles of 

an untreated coupon of stainless steel plate and aluminium silicate deposit were also 

measured. All measurements were made at 25 °C. 

 

2.4. Surface free energy 

 

The theory of the contact angle of pure liquids on a solid substrate was developed 
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200 years ago in terms of the Young equation [14]: 

 

  SLSL γγθγ −=cos  (1) 

 

where Lγ is the experimentally determined surface tension of the liquid; θ is the contact 

angle; Sγ is the surface free energy of the solid and SLγ is the solid/liquid interfacial 

energy.  In order to obtain the solid surface energy Sγ , an estimate of SLγ  has to be 

obtained. Van Oss et al [15] developed an acid-base approach for the calculation of 

surface energy. The surface energy is seen as the sum of a Lifshitz-van der Waals 

apolar component LW
iγ  and a Lewis acid-base polar component AB

iγ :  

 

 
 AB

i
LW
ii γγγ +=  (2) 

 

The acid-base polar component AB
iγ  can be further subdivided by using specific terms 

for an electron donor ( −
iγ ) and an electron acceptor ( +

iγ ) subcomponent: 

 

 
 −+= ii

AB
i γγγ 2  (3) 

 

The solid/liquid interfacial energy is then given by: 

 

 
 )(2 +−−+ ⋅+⋅+⋅−+= LSLS

LW
L

LW
SLSSL γγγγγγγγγ  (4) 
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Table 1 Test liquids and their surface tension components [13] 
 

 

 

 

 

 
Table 2 Contact angle and surface energy components of coatings 

Surface tension data (mN/m) 
Lγ  LW

Lγ  AB
Lγ  +

Lγ  −
Lγ  

Water (W), H2O 72.8 21.8 51.0 25.5 25.5 

Diiodomethane (D), CH2I2 50.8 50.8 0 0 0 

Ethylene glycol (E), C2H6O2 48.0 29.0 19.0 1.92 47.0 

Coatings Contact Angle θ  

[°] 

Surface Energy Components 

[mJ/m2] 

Name  Chemistry θW θDi θEG LWγ  +γ  −γ  ABγ  TOTγ  

1 Ni-P-PTFE 

(4.0% PTFE) 

85.1±2.4 64.2±0.6 70.6±0.6 26.16 0.00 9.42 0.16 26.32 

2 Ni-P-PTFE 

(5.1% PTFE) 

84.5±0.7 70.1±0.9 75.2±0.7 22.82 0.01 11.60 0.52 23.34 

3 DLC coating 79.9±0.8 49.6±0.7 59.4±0.6 34.49 0.00 8.84 0.40 34.90 

4 N-DLC  

(1.6% N) 

90.0±0.9 49.3±0.3 60.2±0.6 34.66 0.11 2.07 0.93 35.60 

5 N-DLC  

(4.1% N) 

85.8±0.9 44.5±0.3 59.2±0.6 37.28 0.01 3.99 0.37 37.65 

6 N-DLC 

(8.1% N) 

77.3±0.7 43.2±0.6 47.0±0.5 37.96 0.28 6.58 2.71 40.68 

7 Si-DLC 

(7.0% Si) 

85.9±0.7 50.0±0.4 63.8±0.6 34.27 0.00 5.22 0.11 34.38 

8 F-DLC 

(5% F) 

82.5±0.3 59.6±0.3 57.4±0.4 28.80 0.44 6.38 3.33 32.14 

9 F-DLC 

(15% F) 

90.5±0.9 61.2±1.3 71.4±2.0 27.88 0.00 5.05 0.07 27.95 

10 Stainless steel 

(untreated) 

69.4±1.1 35.6±0.3 47.1±0.9 41.75 0.09 6.19 1.52 43.27 

11 Aluminium 

silicate deposit  

102.5±3.0 0 74.0±0.9 50.80 1.39 4.51 5.02 55.82 
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Combining this with the Young equation (1), a relation between the measured contact 

angle and the solid and liquid surface free energy terms can be obtained: 

 

 
 )(2)cos1( +−−+ ⋅+⋅+⋅=+⋅ LSLS

LW
L

LW
SL γγγγγγθγ  (5) 

 

In order to determine the surface free energy components ( LW
Sγ ) and parameters +

Sγ  

and −
Sγ  of a solid, the contact angles of at least three liquids with known surface tension 

components ( LW
Lγ , +

Lγ , −
Lγ ), two of which must be polar, have to be determined. 

  

2.5. Experiments of aluminium silicate fouling  

 

Stainless steel coupons (200mm length X 100mm width X 0.6mm thickness) were cut 

from a new heat exchanger stainless plate (371mm×871mm×0.6mm) for coating with 

Ni–P–PTFE and DLC. The coated plate coupons were attached to the flange on the 

inside of process pipes connecting the extractors  and the heat exchangers and 

subsequently evaluated in the South African solvent extraction plants over a period of 

ten months for the deposition of colloidal aluminium silicate.  An untreated stainless 

steel plate coupon was also evaluated as the control. The flange with the attached 

coated and uncoated stainless steel coupons was installed in the process pipe 

connected to the heat exchangers and the coupons were tested at 55-72°C in the hot 

plant water containing Al, Si, Fe and Ca ions and phenolics. A significant amount of the 

colloidal aluminium silicate deposit was formed on the internal walls of the plant process 

pipe when the plant water was flowing through this pipe. High temperatures of the plant 
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water could result in significant amount of aluminium silicate precipitate formed in the 

plant equipment. The pH and the flow rate of hot plant water flowing through the process 

pipe were 8.8 and 760m3/h respectively.  After treating the coated and uncoated plate 

coupons with hot plant water for 5 months using above mentioned experimental 

conditions, the tested coupons attached to the flange were subsequently removed from 

the process pipe for the visual observations.  The observed tested coupons attached to 

the flange were reinstalled in the same process pipe and the coupons were 

subsequently re-exposed to hot plant water containing Al ions, Si ions, Ca ions, Fe ions 

and phenols for further 5 months. The total experimental period was 10 months. 3 other 

uncoated coupons had been previously tested at identical conditions, which were 

completely covered by aluminium silicate deposit after the experiments and there was 

no significant difference between them on the average coverage and weight of fouling 

deposits. 

 

3. Experimental Results  

3.1. Surface characterization 

 

Figure 1(a) shows a typical SEM image of Ni-P-PTFE coating with 5.1 wt% PTFE, 

which shows that the PTFE particles were homogenously distributed in the Ni-P matrix. 

The element compositions of the Ni–P–PTFE coating were determined by EDX analysis 

(Figure 1b) and the PTFE content was calculated based on the fluorine content in the 

coating. The N, Si or F content in the DLC coatings was analyzed by EDX.  Figures 2(a) 

and 2(b) show typical EDX images of N-doped DLC coating (8.1% N) and Si-doped DLC 
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coating (7.0% Si), respectively.  The detailed chemical compositions of the Ni-P-PTFE 

coatings and the doped DLC coatings are given in Table 2.  

 

  

        

  

 

(a) (b) 

       Figure 1 (a) SEM image of Ni-P-PTFE; (b) EDX image of Ni-P-PTFE 

 

 

  

     

  

 

 (a) (b) 

Figure 2 (a) EDX image of N-doped DLC with 8.1% N; (b) EDX image of Si-doped  
              DLC with 7.0% Si 
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3.2 Contact angle and surface energy component 

 

Table 2 shows the contact angle and surface energy of the Ni-P-PTFE coatings and 

the doped DLC coatings used in this investigation. Table 2 also shows the contact angle 

and surface energy of aluminium silicate deposit. For the Ni-P-PTFE coatings, surface 

energy decreases with PTFE content increasing. For N-doped DLC coatings, the 

surface energy increases with N content increasing. For F-doped DLC coatings, the 

surface energy decreases with F content increasing. The surface energy of the 

untreated stainless steel plate coupon was 43 mJ/m2, which was higher than those of 

the coatings. The surface energy of the coatings was in the range of 23.34 – 40.68 

mJ/m2. The surface energy of the aluminium silicate deposit was very high, about 56 

mJ/m2.  

 

3.3. Aluminium silicate fouling 

 

It was visually observed that the uncoated coupons of the heat exchanger plate were 

fully covered by the aluminium silicate deposit after testing these coupons in the process 

pipe for 5 months, whilst the coated plate coupons were not covered by the aluminium 

silicate deposit. The experimental results also showed that the untreated stainless steel 

plate coupons were fully covered with the aluminium silicate fouling deposit after testing 

the coupons for 10 months. The deposit strongly adhered to the surface and was 

difficult to remove. The two Ni-P-PTFE coated plate coupons were also fully covered 

with fouling deposits. However the wet deposit was loosely adhered and could be 

removed easily. All the doped DLC coatings showed excellent anti-fouling properties. 
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Most of the coated surfaces were clean (without fouling deposits) and only a few parts 

were covered with scattered fouling particles after testing the coupons for 10 months. 

The wet deposits were very loosely adhered and very easily to be removed by water.  

 

The fouling deposit was dried and removed from each coupon surface. Then it was 

weighed using a Sartorius electronic scale with 10-5 g precision.  The mass of the 

deposit was divided by the projected area of the plate coupon to calculate deposit 

surface density in mg/cm2: For the untreated stainless steel plate coupon, it was 26.77 

mg/cm2; for the Ni-P-PTFE coated plate coupon, it was 21.83 - 24.08 mg/cm2; while for 

the doped DLC coated plate coupon, it was in the range of 0.7 – 6.10 mg/cm2.  Figure 3 

shows the effect of surface energy on the adhesion of aluminium silicate fouling.  

Clearly there exists the most favourable surface energy of the coatings (about 35 

mJ/m2), at which the adhesion of aluminium silicate fouling was lowest. The N-doped 

DLC coating (1.6% N) performed best in inhibiting fouling formation, which reduced 

fouling formation by 97% compared with untreated stainless steel plate coupons. 

 

Figures 4a and 4b show typical aluminium silicate fouling patterns on untreated 

stainless steel coupon with surface energy of 43.27 mJ/m2 and on N-DLC coated 

coupon with surface energy of 35.6 mJ/m2, respectively. Clearly the untreated stainless 

steel plate coupons were fully covered with the aluminium silicate fouling deposit after 5 

months; while only a few parts of the N-DLC coating were covered with thin scattered 

fouling particles after 10 months. 
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Figure 3 Effect of total surface energy on the adhesion of aluminium silicate fouling  
             (Bare stainless steel and Ni-P-PTFE coatings were fully coved with the deposit;  
              while the DLC coatings were only partially coved with the deposit)  
 
 
 
 

                                

                                              (a)                                          (b) 

 

Figure 4 Aluminium silicate fouling formation on (a) untreated stainless steel coupon  
              with surface energy of 43.27 mJ/m2 and (b) N-DLC coated coupon with surface  
              energy of 35.6 mJ/m2. 
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4. Discussion: adhesion mechanism 

 

Particulate fouling adhesion may be described with the extended DLVO (Deryagin, 

Landau, Verwey and Overbeek) theory [16]. According to this theory, the principal 

interaction forces determining hetero-coagulation include a Lifshitz-van der Waals (LW) 

interaction component, an electrostatic double-layer (EL) component, a Lewis acid-base 

(AB) component, and Brownian motion (Br). The total interaction energy TOTE132∆  between 

particulate (1) and a solid surface (2) in a fluid (3) can be written as the sum of these 

corresponding interaction terms [16]: 

 

 BrELABLWTOT EEEEE 132132132132132 ∆+∆+∆+∆=∆  (6) 

 

The balance between all possible interactions determines whether or not the particulate 

will attach on the surface: adhesion will take place when TOTE132∆  is negative (i.e. total 

interaction force is attractive). 

 

Zhao and Müller-Steinhagen [1] derived the optimum surface energy components of a 

surface, for which particulate adhesion force is minimal, using the extended DLVO 

theory: 

 

 2
31 )(

4
1 LWLWTOT

S γγγ +⋅=  (7) 
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where TOT
Sγ , LW

1γ  and LW
3γ  are the surface free energy of the surface (e.g. coating), 

particles (e.g. aluminium silicate) and fluid (e.g. water) respectively. They can be 

determined experimentally.  As the equation isolates the effect of surface energy upon 

particulate adhesion from the numerous parameters in the extended DLVO theory, it 

appears relatively simple.  

 

Equation (7) explains the experimental results in Figure 3 – while aluminium silicate 

adhesion was lowest when the surface energy of the coatings was about 35 mJ/m2.  

The LW
1γ value of aluminium silicate is 50.8 mJ/m2 (see Table 1) and LW

3γ  of water is 21.8 

mJ/m2 (see Table 2). Equation (7) then produces a theoretical value of TOT
Sγ =34.8 

mJ/m2, which approximates the experimental value of the surface energy for which 

aluminium silicate adhesion was lowest.   

 

In addition to surface energy, other factors, including zeta potentials, surface 

roughness, temperature and fluid flow velocity also have a significant influence on 

aluminium silicate adhesion [17]. It was reported that the zeta potential of DLC coatings 

are -35 mv [18] and the zeta potential of Ni-P-PTFE coatings and bare stainless steel 

are around -25 mv [4]; while the zeta potential of aluminium silicate is -44 mV [19].  As 

the DLC coatings are more negatively charged compared with stainless steel, the DLC 

coatings are more repellent to the negatively charged aluminium silicate. The 

mechanisms of aluminium silicate adhesion are complex. If, however, initial aluminium 

silicate adhesion strength is reduced by the best surface energy approach, they could 

be removed easily from the surfaces by flowing water. This may lead to a way of 
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controlling particulate fouling formation. 

 

 

5. Conclusions 

 

In this paper, autocatalytic Ni–P–PTFE composite coatings and modified diamond-like 

carbon (DLC) coatings were applied to coupons of the stainless steel heat exchanger 

plates. The experimental results demonstrate that the surface energies of the coatings 

have a significant influence on the adhesion of aluminium silicate fouling.  When the 

surface energy of the coatings was about 35 mJ/m2, the aluminium silicate adhesion 

was lowest.   The experimental results also show that the coating with the surface 

energy reduced the adhesion of aluminium silicate deposit by 97%, compared with 

uncoated coupons of the stainless steel heat exchanger plate.  The anti-fouling 

mechanism of the coatings was successfully explained with the extended DLVO theory.  

 

Acknowledgment 

 

This paper was developed from a collaborative research program between Sasol 

Synfuels; Sasol Technology Research & Development (R&D) and the Department of 

Mechanical Engineering at the University of Dundee. The support provided by the Sasol 

Maintenance Foreman and his team is gratefully acknowledged. The information 

presented in this paper is based on the research financially supported by the South 

African Research Chairs Initiative (SARChI) of the Department of Science and 

Technology and National Research Foundation of South Africa (Coal Research Chair 



 

18 
 

Grant No. 86880). Any opinion, finding or conclusion or recommendation expressed in 

this material is that of the author(s) and the NRF does not accept any liability in this 

regard. 

 

References 

 [1] Q. Zhao, Y. Liu, S. Wang, H. Müller-Steinhagen. Chem. Eng. Sci. 60 (17) (2005) 

4858. 

 [2] R.H. Matjie and R. Engelbrecht. Hydrometallurgy. 2007:85:172-182. 

 [3] S.S. Tulsi. Finishing 7 (1883)14. 

 [4] C. Liu, Q. Zhao, Biofouling 27 (3) (2011) 275. 

 [5] Q. Zhao, Y. Liu, J. Food Eng. 72 (3) (2006) 266. 

 [6] Q. Zhao, Y. Liu, S. Wang. Desalination 180 (1-3) (2005) 133. 

 [7] W. Liu, P.J. Fryer, Z. Zhang, Q. Zhao, Y. Liu. Innov Food Sci Emerg 7 (4) (2006) 

263. 

 [8] A. Grill, Wear 168 (1993) 143. 

 [9] Q. Zhao, X.J. Su, S. Wang, X. Zhang, P. Navabpour, D. Teer, Biofouling 25 

(2009) 377. 

 [10] Q. Zhao, X. Wang, Surf Coat Tech 192 (2005) 77. 

 [11] H. Müller-Steinhagen, Q. Zhao, A. Helali-Zadeh, X. Ren, Can J Chem Eng 78 

(2000) 12. 

 [12] M. Ishihara, T. Kosaka, T. Nakamura, K. Tsugawa, M. Hasegawa, F. Kokai, Y. 

Koga, Diam Relat Mater 15 (2006) 1011. 

 [13] C.J. van Oss, L. Ju, M.K. Chaudhury, R.J. Good. J Colloid Interface Sci 128 

(1989) 313. 



 

19 
 

 [14] T. Young. Philosophical Transactions of the Royal Society London 95 (1805) 65. 

 [15] C.J. van Oss, M.K. Chaudhury. Langmuir 4 (1988) 884. 

 [16] C.J. van Oss, Interfacial Forces in Aqueous Media. Marcel Dekker, New York, 

1994. 

 [17] H. Muller-Steinhagen, M. Jamialahmadi, Understanding Heat Exchanger Fouling 

And Its Mitigation 1 (1999) 209. 

 [18] E. Salgueiredo, M. Vila, M.A. Silva, M.A. Lopes, J.D. Santos, F.M. Costa, R.F. 

Silva, P.S. Gomes, M.H. Femandes. Diamond and Related 

Materials 17(2008) 878. 

 [19] T. Yokoyama, A. Ueda, K. Kato, K. Mogi, S. Matsuo. Journal of Colloid and 

Interface Science 252 (2002) 1. 

 


