137 research outputs found

    Detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT)

    Get PDF
    The purpose of this study was to analyze the detectability of colorectal neoplasia with fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (FDG-PET/CT). Data for a total of 492 patients who had undergone both PET/CT and colonoscopy were analyzed. After the findings of PET/CT and colonoscopy were determined independently, the results were compared in each of the six colonic sites examined in all patients. The efficacy of PET/CT was determined using colonoscopic examination as the gold standard. In all, 270 colorectal lesions 5 mm or more in size, including 70 pathologically confirmed malignant lesions, were found in 172 patients by colonoscopy. The sensitivity and specificity of PET/CT for detecting any of the colorectal lesions were 36 and 98%, respectively. For detecting lesions 11 mm or larger, the sensitivity was increased to 85%, with the specificity remaining consistent (97%). Moreover, the sensitivity for tumors 21 mm or larger was 96% (48/50). Tumors with malignant or high-grade pathology were likely to be positive with PET/CT. A size of 10 mm or smaller [odds ratio (OR) 44.14, 95% confidence interval (95% CI) 11.44-221.67] and flat morphology (OR 7.78, 95% CI 1.79-36.25) were significant factors that were associated with false-negative cases on PET/CT. The sensitivity of PET/CT for detecting colorectal lesions is acceptable, showing size- and pathology-dependence, suggesting, for the most part, that clinically relevant lesions are detectable with PET/CT. However, when considering PET/CT for screening purposes caution must be exercised because there are cases of false-negative results

    Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys

    Get PDF
    In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Two spatiotemporally distinct value systems shape reward-based learning in the human brain

    Get PDF
    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants’ switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning

    GEANT4--a simulation toolkikt

    Get PDF
    Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics

    Differential Encoding of Factors Influencing Predicted Reward Value in Monkey Rostral Anterior Cingulate Cortex

    Get PDF
    Background: The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. Methods and Findings: We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1–4 sequential color discrimination trials to obtain a reward of 1–3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount
    corecore