6,759 research outputs found
A Study of the Feasibility of Using a Pulping Aid with Polysulfide Kraft Cooks
The purpose of this paper was to determine the feasibility of using a pulping aid with a polysulfide kraft cook. Since any change in an operation such as pulping must yield a product such that the quality is better or not appreciably reduced and at the same time must be economically acceptible, the feasibility was based on these factors. Tests were made on a standard kraft cook, a polysulfide cook, a cook using the pulping aid alone and a cook using the pulping aid with the polysulfides. From the work conducted, there were no significant changes in the physical and optical tests performed while at the same time, a slight increase in the yield over the standard kraft cook was noted
On quantum effects near the liquid-vapor transition in helium
The liquid-vapor transition in He-3 and He-4 is investigated by means of
path-integral molecular dynamics and the quantum virial expansion. Both methods
are applied to the critical isobar and the critical isochore. While previous
path-integral simulations have mainly considered the lambda transition and
superfluid regime in He-4, we focus on the vicinity of the critical point and
obtain good agreement with experimental results for the molar volume and the
internal energy down to subcritical temperatures. We find that an effective
classical potential that properly describes the two-particle radial
distribution function exhibits a strong temperature dependence near the
critical temperature. This contrasts with the behavior of essentially classical
systems like xenon, where the effective potential is independent of
temperature. It is conjectured that, owing to this difference in behavior
between classical and quantum-mechanical systems, the crossover behavior
observed for helium in the vicinity of the critical point differs qualitatively
from that of other simple liquids
Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters
Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re
Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering
An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface
Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia
The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented
Developments in new aircraft tire tread materials
Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock
Design and analysis issues of integrated control systems for high-speed civil transports
A study was conducted to identify, rank, and define development plans for the critical guidance and control design and analysis issues as related to economically viable and environmentally acceptable high-speed civil transport. The issues were identified in a multistep process. First, pertinent literature on supersonic cruise aircraft was reviewed, and experts were consulted to establish the fundamental characteristics and problems inherent to supersonic cruise aircraft. Next, the advanced technologies and strategies being pursued for the high-speed civil transport were considered to determine any additional unique control problems the transport may have. Finally, existing technologies and methods were examined to determine their capabilities for the design and analysis of high-speed civil transport control systems and to identify the shortcomings and issues. Three priority levels - mandatory, highly beneficial, and desirable - were established. Within each of these levels, the issues were further ranked. Technology development plans for each issue were defined. Each plan contains a task breakdown and schedule
The Simulation and Assimilation of Doppler Wind Lidar Observations in Support of Future Instruments
With the launch of the European Space Agency's Atmospheric Dynamics Mission (ADM-Aeolus) in 2011 and the call for the 3D-Winds mission in National Research Council's decadal survey, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework is being utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP). This effort will be presented, including the methodology of proxy data generation, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type
Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)
We observe using low-energy electron microscopy the self-assembly of
monolayer-thick stripes of Au on W(110) near the transition temperature between
stripes and the non-patterned (homogeneous) phase. We demonstrate that the
amplitude of this Au stripe phase decreases with increasing temperature and
vanishes at the order-disorder transition (ODT). The wavelength varies much
more slowly with temperature and coverage than theories of stress-domain
patterns with sharp phase boundaries would predict, and maintains a finite
value of about 100 nm at the ODT. We argue that such nanometer-scale stripes
should often appear near the ODT.Comment: 5 page
Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen
Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed
- …
