6,759 research outputs found

    A Study of the Feasibility of Using a Pulping Aid with Polysulfide Kraft Cooks

    Get PDF
    The purpose of this paper was to determine the feasibility of using a pulping aid with a polysulfide kraft cook. Since any change in an operation such as pulping must yield a product such that the quality is better or not appreciably reduced and at the same time must be economically acceptible, the feasibility was based on these factors. Tests were made on a standard kraft cook, a polysulfide cook, a cook using the pulping aid alone and a cook using the pulping aid with the polysulfides. From the work conducted, there were no significant changes in the physical and optical tests performed while at the same time, a slight increase in the yield over the standard kraft cook was noted

    On quantum effects near the liquid-vapor transition in helium

    Full text link
    The liquid-vapor transition in He-3 and He-4 is investigated by means of path-integral molecular dynamics and the quantum virial expansion. Both methods are applied to the critical isobar and the critical isochore. While previous path-integral simulations have mainly considered the lambda transition and superfluid regime in He-4, we focus on the vicinity of the critical point and obtain good agreement with experimental results for the molar volume and the internal energy down to subcritical temperatures. We find that an effective classical potential that properly describes the two-particle radial distribution function exhibits a strong temperature dependence near the critical temperature. This contrasts with the behavior of essentially classical systems like xenon, where the effective potential is independent of temperature. It is conjectured that, owing to this difference in behavior between classical and quantum-mechanical systems, the crossover behavior observed for helium in the vicinity of the critical point differs qualitatively from that of other simple liquids

    Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters

    Get PDF
    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re

    Wear, friction, and temperature characteristics of an aircraft tire undergoing braking and cornering

    Get PDF
    An investigation to evaluate the wear, friction, and temperature characteristics of aircraft tire treads fabricated from different elastomers is presented. The braking and cornering tests performed on aircraft tires retreaded with currently employed and experimental elastomers are described. The tread wear rate is discussed in relation to the slip ratio during braking and yaw angle during cornering. The extent of wear in either operational mode is examined in relation to the runway surface

    Thermophysical properties of parahydrogen from the freezing liquid line to 5000 R for pressures to 10000 psia

    Get PDF
    The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented

    Developments in new aircraft tire tread materials

    Get PDF
    Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock

    Design and analysis issues of integrated control systems for high-speed civil transports

    Get PDF
    A study was conducted to identify, rank, and define development plans for the critical guidance and control design and analysis issues as related to economically viable and environmentally acceptable high-speed civil transport. The issues were identified in a multistep process. First, pertinent literature on supersonic cruise aircraft was reviewed, and experts were consulted to establish the fundamental characteristics and problems inherent to supersonic cruise aircraft. Next, the advanced technologies and strategies being pursued for the high-speed civil transport were considered to determine any additional unique control problems the transport may have. Finally, existing technologies and methods were examined to determine their capabilities for the design and analysis of high-speed civil transport control systems and to identify the shortcomings and issues. Three priority levels - mandatory, highly beneficial, and desirable - were established. Within each of these levels, the issues were further ranked. Technology development plans for each issue were defined. Each plan contains a task breakdown and schedule

    The Simulation and Assimilation of Doppler Wind Lidar Observations in Support of Future Instruments

    Get PDF
    With the launch of the European Space Agency's Atmospheric Dynamics Mission (ADM-Aeolus) in 2011 and the call for the 3D-Winds mission in National Research Council's decadal survey, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework is being utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP). This effort will be presented, including the methodology of proxy data generation, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type

    Nanoscale periodicity in stripe-forming systems at high temperature: Au/W(110)

    Full text link
    We observe using low-energy electron microscopy the self-assembly of monolayer-thick stripes of Au on W(110) near the transition temperature between stripes and the non-patterned (homogeneous) phase. We demonstrate that the amplitude of this Au stripe phase decreases with increasing temperature and vanishes at the order-disorder transition (ODT). The wavelength varies much more slowly with temperature and coverage than theories of stress-domain patterns with sharp phase boundaries would predict, and maintains a finite value of about 100 nm at the ODT. We argue that such nanometer-scale stripes should often appear near the ODT.Comment: 5 page

    Viscosity and thermal conductivity coefficients of gaseous and liquid oxygen

    Get PDF
    Equations and tables are presented for the viscosity and thermal conductivity coefficients of gaseous and liquid oxygen at temperatures between 80 K and 400 K for pressures up to 200 atm. and at temperatures between 80 K and 2000 K for the dilute gas. A description of the anomalous behavior of the thermal conductivity in the critical region is included. The tabulated coefficients are reliable to within about 15% except for a region in the immediate vicinity of the critical point. Some possibilities for future improvements of this reliability are discussed
    corecore