245 research outputs found

    Modeling driver control behavior in both routine and near-accident driving

    Get PDF
    Building on ideas from contemporary neuroscience, a framework is proposed in which drivers’ steering and pedal behavior is modeled as a series of individual control adjustments, triggered after accumulation of sensory evidence for the need of an adjustment, or evidence that a previous or ongoing adjustment is not achieving the intended results. Example simulations are provided. Specifically, it is shown that evidence accumulation can account for previously unexplained variance in looming detection thresholds and brake onset timing. It is argued that the proposed framework resolves a discrepancy in the current driver modeling literature, by explaining not only the short-latency, well-tuned, closed-loop type of control of routine driving, but also the degradation into long-latency, ill-tuned open-loop control in more rare, unexpected, and urgent situations such as near-accidents

    Sustained sensorimotor control as intermittent decisions about prediction errors: computational framework and application to ground vehicle steering

    No full text
    A conceptual and computational framework is proposed for modelling of human sensorimotor control and is exemplified for the sensorimotor task of steering a car. The framework emphasises control intermittency and extends on existing models by suggesting that the nervous system implements intermittent control using a combination of (1) motor primitives, (2) prediction of sensory outcomes of motor actions, and (3) evidence accumulation of prediction errors. It is shown that approximate but useful sensory predictions in the intermittent control context can be constructed without detailed forward models, as a superposition of simple prediction primitives, resembling neurobiologically observed corollary discharges. The proposed mathematical framework allows straightforward extension to intermittent behaviour from existing one-dimensional continuous models in the linear control and ecological psychology traditions. Empirical data from a driving simulator are used in model-fitting analyses to test some of the framework’s main theoretical predictions: it is shown that human steering control, in routine lane-keeping and in a demanding near-limit task, is better described as a sequence of discrete stepwise control adjustments, than as continuous control. Results on the possible roles of sensory prediction in control adjustment amplitudes, and of evidence accumulation mechanisms in control onset timing, show trends that match the theoretical predictions; these warrant further investigation. The results for the accumulation-based model align with other recent literature, in a possibly converging case against the type of threshold mechanisms that are often assumed in existing models of intermittent control

    When Should the Chicken Cross the Road? - Game Theory for Autonomous Vehicle - Human Interactions

    Get PDF
    Autonomous vehicle localization, mapping and planning in un-reactive environments are well-understood, but the human factors of complex interactions with other road users are not yet developed. This study presents an initial model for negotiation between an autonomous vehicle and another vehicle at an unsigned intersections or (equivalently) with a pedestrian at an unsigned road-crossing (jaywalking), using discrete sequential game theory. The model is intended as a basic framework for more realistic and data-driven future extensions. The model shows that when only vehicle position is used to signal intent, the optimal behaviors for both agents must include a non-zero probability of allowing a collision to occur. This suggests extensions to reduce this probability in future, such as other forms of signaling and control. Unlike most Game Theory applications in Economics, active vehicle control requires real-time selection from multiple equilibria with no history, and we present and argue for a novel solution concept, meta-strategy convergence, suited to this task

    Using Driver Control Models to Understand and Evaluate Behavioral Validity of Driving Simulators

    No full text
    For a driving simulator to be a valid tool for research, vehicle development, or driver training, it is crucial that it elicits similar driver behavior as the corresponding real vehicle. To assess such behavioral validity, the use of quantitative driver models has been suggested but not previously reported. Here, a task-general conceptual driver model is proposed, along with a taxonomy defining levels of behavioral validity. Based on these theoretical concepts, it is argued that driver models without explicit representations of sensory or neuromuscular dynamics should be sufficient for a model-based assessment of driving simulators in most contexts. As a task-specific example, two parsimonious driver steering models of this nature are developed and tested on a dataset of real and simulated driving in near-limit, low-friction circumstances, indicating a clear preference of one model over the other. By means of closed-loop simulations, it is demonstrated that the parameters of this preferred model can generally be accurately estimated from unperturbed driver steering data, using a simple, open-loop fitting method, as long as the vehicle positioning data are reliable. Some recurring patterns between the two studied tasks are noted in how the model’s parameters, fitted to human steering, are affected by the presence or absence of steering torques and motion cues in the simulator

    A quantitative driver model of pre-crash brake onset and control

    Get PDF
    An existing modelling framework is leveraged to create a driver braking model for use in simulations of critical longitudinal scenarios with a slower or braking lead vehicle. The model applies intermittent brake adjustments to minimize accumulated looming prediction error. It is here applied to the simulation of a set of lead vehicle scenarios. The imulation results in terms of brake initiation timing and brake jerk are demonstrated to capture well the specific types of kinematics-ependencies that have been recently reported from naturalistic near-crashes and crashes

    Evaluation of Vehicle Ride Height Adjustments Using a Driving Simulator

    Get PDF
    Testing of vehicle design properties by car manufacturers is primarily performed on-road and is resource-intensive, involving costly physical prototypes and large time durations between evaluations of alternative designs. In this paper, the applicability of driving simulators for the virtual assessment of ride, steering and handling qualities was studied by manipulating vehicle air suspension ride height (RH) (ground clearance) and simulator motion platform (MP) workspace size. The evaluation was carried out on a high-friction normal road, routinely used for testing vehicle prototypes, modelled in a driving simulator, and using professional drivers. The results showed the differences between the RHs were subjectively distinguishable by the drivers in many of the vehicle attributes. Drivers found standard and low RHs more appropriate for the vehicle in terms of the steering and handling qualities, where their performance was deteriorated, such that the steering control effort was the highest in low RH. This indicated inconsistency between subjective preferences and objective performance and the need for alternative performance metrics to be defined for expert drivers. Moreover, an improvement in drivers’ performance was observed, with a reduction of steering control effort, in larger MP configurations

    Fibromyalgian monisyinen patofysiologia

    Get PDF

    Defining interactions: a conceptual framework for understanding interactive behaviour in human and automated road traffic

    Get PDF
    Rapid advances in technology for highly automated vehicles (HAVs) have raised concerns about coexistence of HAVs and human road users. Although there is a long tradition of research into human road user interactions, there is a lack of shared models and terminology to support cross-disciplinary research and development towards safe and acceptable interaction-capable HAVs. Here, we review the main themes and findings in previous theoretical and empirical interaction research, and find large variability in perspectives and terminologies. We unify these perspectives in a structured, cross-theoretical conceptual framework, describing what road traffic interactions are, how they arise, and how they get resolved. Two key contributions are: (1) a stringent definition of “interaction”, as “a situation where the behaviour of at least two road users can be interpreted as being influenced by the possibility that they are both intending to occupy the same region of space at the same time in the near future”, and (2) a taxonomy of the types of behaviours that road users exhibit in interactions. We hope that this conceptual framework will be useful in the development of improved empirical methodology, theoretical models, and technical requirements on vehicle automation
    corecore