204 research outputs found

    Immunocytochemical evidence for co-expression of Type III IP(3) receptor with signaling components of bitter taste transduction

    Get PDF
    BACKGROUND: Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP(3), which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C Ξ²2, and the G protein subunits Ξ±-gustducin, Ξ²3, and Ξ³13. However, the identity of the IP(3) receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP(3) receptors expressed in taste cells and to examine taste bud expression patterns for IP(3)R3. RESULTS: Antibodies against Type I, II, and III IP(3) receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP(3) receptor (IP(3)R3) was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP(3) receptors. To investigate the potential role of IP(3)R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP(3)R3 is expressed in the same subset of cells expressing other bitter signaling components. IP(3)R3 immunoreactive taste cells were also immunoreactive for PLCΞ²2 and Ξ³13. Alpha-gustducin immunoreactivity was present in a subset of IP(3)R3, PLCΞ²2, and Ξ³13 positive cells. CONCLUSIONS: IP(3)R3 is the dominant form of the IP(3) receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction

    Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25

    Get PDF
    BACKGROUND: Taste receptor cells are responsible for transducing chemical stimuli from the environment and relaying information to the nervous system. Bitter, sweet and umami stimuli utilize G-protein coupled receptors which activate the phospholipase C (PLC) signaling pathway in Type II taste cells. However, it is not known how these cells communicate with the nervous system. Previous studies have shown that the subset of taste cells that expresses the T2R bitter receptors lack voltage-gated Ca(2+ )channels, which are normally required for synaptic transmission at conventional synapses. Here we use two lines of transgenic mice expressing green fluorescent protein (GFP) from two taste-specific promoters to examine Ca(2+ )signaling in subsets of Type II cells: T1R3-GFP mice were used to identify sweet- and umami-sensitive taste cells, while TRPM5-GFP mice were used to identify all cells that utilize the PLC signaling pathway for transduction. Voltage-gated Ca(2+ )currents were assessed with Ca(2+ )imaging and whole cell recording, while immunocytochemistry was used to detect expression of SNAP-25, a presynaptic SNARE protein that is associated with conventional synapses in taste cells. RESULTS: Depolarization with high K(+ )resulted in an increase in intracellular Ca(2+ )in a small subset of non-GFP labeled cells of both transgenic mouse lines. In contrast, no depolarization-evoked Ca(2+ )responses were observed in GFP-expressing taste cells of either genotype, but GFP-labeled cells responded to the PLC activator m-3M3FBS, suggesting that these cells were viable. Whole cell recording indicated that the GFP-labeled cells of both genotypes had small voltage-dependent Na(+ )and K(+ )currents, but no evidence of Ca(2+ )currents. A subset of non-GFP labeled taste cells exhibited large voltage-dependent Na(+ )and K(+ )currents and a high threshold voltage-gated Ca(2+ )current. Immunocytochemistry indicated that SNAP-25 was expressed in a separate population of taste cells from those expressing T1R3 or TRPM5. These data indicate that G protein-coupled taste receptors and conventional synaptic signaling mechanisms are expressed in separate populations of taste cells. CONCLUSION: The taste receptor cells responsible for the transduction of bitter, sweet, and umami stimuli are unlikely to communicate with nerve fibers by using conventional chemical synapses

    Indolent Small Intestinal CD4+ T-cell Lymphoma Is a Distinct Entity with Unique Biologic and Clinical Features

    Get PDF
    Enteropathy-associated T-cell lymphomas (EATL) are rare and generally aggressive types of peripheral T-cell lymphomas. Rare cases of primary, small intestinal CD4+ T-cell lymphomas with indolent behavior have been described, but are not well characterized. We describe morphologic, phenotypic, genomic and clinical features of 3 cases of indolent primary small intestinal CD4+ T-cell lymphomas. All patients presented with diarrhea and weight loss and were diagnosed with celiac disease refractory to a gluten free diet at referring institutions. Small intestinal biopsies showed crypt hyperplasia, villous atrophy and a dense lamina propria infiltrate of small-sized CD4+ T-cells often with CD7 downregulation or loss. Gastric and colonic involvement was also detected (nβ€Š=β€Š2 each). Persistent, clonal TCRΞ² gene rearrangement products were detected at multiple sites. SNP array analysis showed relative genomic stability, early in disease course, and non-recurrent genetic abnormalities, but complex changes were seen at disease transformation (nβ€Š=β€Š1). Two patients are alive with persistent disease (4.6 and 2.5 years post-diagnosis), despite immunomodulatory therapy; one died due to bowel perforation related to large cell transformation 11 years post-diagnosis. Unique pathobiologic features warrant designation of indolent small intestinal CD4+ T-cell lymphoma as a distinct entity, greater awareness of which would avoid misdiagnosis as EATL or an inflammatory disorder, especially celiac disease

    Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice

    Full text link
    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar

    The Human Polyoma JC Virus Agnoprotein Acts as a Viroporin

    Get PDF
    Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca2+; (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca2+ homeostasis leading to membrane dysfunction and enhancement of virus release

    Transcriptional Signature and Memory Retention of Human-Induced Pluripotent Stem Cells

    Get PDF
    Genetic reprogramming of somatic cells to a pluripotent state (induced pluripotent stem cells or iPSCs) by over-expression of specific genes has been accomplished using mouse and human cells. However, it is still unclear how similar human iPSCs are to human Embryonic Stem Cells (hESCs). Here, we describe the transcriptional profile of human iPSCs generated without viral vectors or genomic insertions, revealing that these cells are in general similar to hESCs but with significant differences. For the generation of human iPSCs without viral vectors or genomic insertions, pluripotent factors Oct4 and Nanog were cloned in episomal vectors and transfected into human fetal neural progenitor cells. The transient expression of these two factors, or from Oct4 alone, resulted in efficient generation of human iPSCs. The reprogramming strategy described here revealed a potential transcriptional signature for human iPSCs yet retaining the gene expression of donor cells in human reprogrammed cells free of viral and transgene interference. Moreover, the episomal reprogramming strategy represents a safe way to generate human iPSCs for clinical purposes and basic research

    Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells

    Get PDF
    Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) Ξ²2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions

    Defining an olfactory receptor function in airway smooth muscle cells

    Get PDF
    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (G olf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.open0
    • …
    corecore