124 research outputs found

    Simultaneous Quantification of Paracetamol and Meloxicam in Tablets by High Performance Liquid Chromatography

    Get PDF
    Purpose: To develop and validate a simple, rapid and inexpensive RP-HPLC method for the simultaneous estimation of paracetamol and meloxicam in tablets.Methods: For the analysis of the drugs, chromatographic analysis was performed on XTerra symmetry C18 column (100 × 4.6 mm, 5 ÎŒ particle size) with mobile phase consisting of methanol and phosphate buffer (pH 9.2) in the ratio of 50:50 v/v, at a flow rate of 0.8 mL/min and eluents monitored at 244 nm. The method was validated for linearity, accuracy, precision, robustness and application for assay as per International Conference on Harmonization (ICH) guidelines.Results: The retention times of paracetamol and meloxicam were 2.467 and 4.971 min, respectively. The calibration curves of peak area versus concentration, which was linear from 5 - 60 ÎŒg/mL for paracetamol and 1 - 12 ÎŒg/mL for meloxicam, had regression coefficient (r2) greater than 0.999. The method had the requisite accuracy, precision, and robustness for simultaneous determination of paracetamol and meloxicam in tablets.Conclusion: The proposed method is simple, low-cost, accurate, precise and can be successfully employed in routine quality control for the simultaneous analysis of paracetamol and meloxicam in tablets.Keywords: Paracetamol, Meloxicam, RP-HPLC, Simultaneous analysis, Tablet

    THE EFFECT OF DEPTH ON THE DRAG FORCE DURING UNDERWATER GLIDING: A CFD APPROACH

    Get PDF
    Swimming events are the sum of a gliding part and a swimming part. The gliding is used after the start and turns, and this phase typically corresponds to 10-25% of the total event time (Chatard et al., 1990). Taking this into account, one can notice that gliding is very important in swimming events and, therefore, its biomechanical study in order to make it more efficient is also very relevant. The gliding can be studied experimentally, by using voluntary subjects gliding in a controlled manner in a swimming pool (using video or velocimetry, for instance), or by using Computational Fluid Dynamics (CFD). Although the experimental method gives “real” values it also presents some drawbacks, like usually imposing a heavy setup and also the fact that it is difficult to control all variables, like depth, attitude or intersegment positions of the swimmer. The CFD method does not have these limitations and its results are comparable to those obtained by the experimental method (Bixler & Riewald, 2002; Silva et al., 2005; Bixler et al., 2007; Vilas Boas et al., 2010). This work aims to study the effects of the depth and velocity on the drag force experienced by a swimmer during gliding using the CFD method

    Comprehensive genetic and epigenetic analysis of sporadic meningioma for macro-mutations on 22q and micro-mutations within the NF2 locus

    Get PDF
    BACKGROUND: Meningiomas are the most common intracranial neoplasias, representing a clinically and histopathologically heterogeneous group of tumors. The neurofibromatosis type 2 (NF2) tumor suppressor is the only gene known to be frequently involved in early development of meningiomas. The objective of this study was to identify genetic and/or epigenetic factors contributing to the development of these tumors. A large set of sporadic meningiomas were analyzed for presence of 22q macro-mutations using array-CGH in order to identify tumors carrying gene dosage aberrations not encompassing NF2. The NF2 locus was also comprehensively studied for point mutations within coding and conserved non-coding sequences. Furthermore, CpG methylation within the NF2 promoter region was thoroughly analyzed. RESULTS: Monosomy 22 was the predominant finding, detected in 47% of meningiomas. Thirteen percent of the tumors contained interstitial/terminal deletions and gains, present singly or in combinations. We defined at least two minimal overlapping regions outside the NF2 locus that are small enough (~550 kb and ~250 kb) to allow analysis of a limited number of candidate genes. Bialleinactivationo the NF2 gne was detected in 36% of meningiomas. Among the monosomy 22 cases, no additional NF2 mutations could be identified in 35% (17 out of 49) of tumors. Furthermore, the majority of tumors (9 out of 12) with interstitial/terminal deletions did not have any detectable NF2 mutations. Methylation within the NF2 promoter region was only identified at a single CpG site in one tumor sample. CONCLUSION: We confirmed previous findings of pronounced differences in mutation frequency between different histopathological subtypes. There is a higher frequency of biallelic NF2 inactivation in fibroblastic (52%) compared to meningothelial (18%) tumors. The presence of macro-mutations on 22q also shows marked differences between fibroblastic (86%) and meningothelial (39%) subtypes. Thus, inactivation of NF2, often combined with the presence of macro-mutation on 22q, is likely not as important for the development of the meningothelial subtype, as opposed to the fibroblastic form. Analysis of 40 CpG sites distributed within 750 bp of the promoter region suggests that NF2 promoter methylation does not play a major role in meningioma development

    Quantifying single nucleotide variant detection sensitivity in exome sequencing

    Get PDF
    BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits

    Bank insolvencies, priority claims and systemic risk

    Get PDF
    We review an extensive literature debating the merits of alternative priority structures for banking liabilities put forward by financial economists, legal scholars and policymakers. Up to now, this work has focused exclusively on the relative advantages of each group of creditors to monitor the activities of bankers. We argue that systemic risk is another dimension that this discussion must include. The main message of our work is that when bank failures are contagious then when regulators assign priority rights need also to take into account how the bankruptcy resolution of one institution might affect the survival of other institutions that have acted as its creditors. When the network structure is fixed the solution is straightforward. Other banks should have priority to minimize the risk of their downfall. However, if the choice of policy can affect the structure of the network, policy design becomes more complex.This is a fruitful avenue for future research

    Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection

    Get PDF
    Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population

    Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data.

    Get PDF
    BACKGROUND: Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. METHODS: We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on Aging, and International Parkinson's Disease Genomics Consortium studies), which were independent of the original reports of chromosome 22q11.2 deletion syndrome. We did case-control association analysis to compare the proportion of 22q11.2 deletions found, using the Fisher's exact test for the independent case-control studies and the Mantel-Haenszel test for the meta-analyses. We retrieved clinical details of patients with Parkinson's disease who had 22q11.2 deletions from the medical records of these patients. FINDINGS: We included array-based copy number variation data from 9387 patients with Parkinson's disease and 13 863 controls. Eight patients with Parkinson's disease and none of the controls had 22q11.2 deletions (p=0·00082). In the 8451 patients for whom age at onset data were available, deletions at 22q11.2 were associated with Parkinson's disease age at onset (Mann-Whitney U test p=0·001). Age at onset of Parkinson's disease was lower in patients carrying a 22q11.2 deletion (median 37 years, 95% CI 32·0-55·5; mean 42·1 years [SD 11·9]) than in those who did not carry a deletion (median 61 years, 95% CI 60·5-61·0; mean 60·3 years [SD 12·8]). A 22q11.2 deletion was present in more patients with early-onset (p<0·0001) and late-onset Parkinson's disease (p=0·016) than in controls, and in more patients with early-onset than late-onset Parkinson's disease (p=0·005). INTERPRETATION: Clinicians should be alert to the possibility of 22q11.2 deletions in patients with Parkinson's disease who have early presentation or features associated with the chromosome 22q11.2 deletion syndrome, or both. FUNDING: UK Medical Research Council, UK Wellcome Trust, Parkinson's UK, Patrick Berthoud Trust, National Institutes of Health, "Investissements d'Avenir" ANR-10-IAIHU-06, Dutch Parkinson Foundation (Parkinson Vereniging), Neuroscience Campus Amsterdam, National Institute for Health Research, National Institute on Aging, National Institutes of Health.UK Medical Research Council, UK Wellcome Trust, Parkinson's UK, Patrick Berthoud Trust, National Institutes of Health, “Investissements d'Avenir” ANR-10-IAIHU-06, Dutch Parkinson Foundation (Parkinson Vereniging), Neuroscience Campus Amsterdam, National Institute for Health Research, National Institute on Aging, National Institutes of Health.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/S1474-4422(16)00071-

    Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia

    Get PDF
    The antipsychotic clozapine is uniquely effective in the management of schizophrenia; however, its use is limited by its potential to induce agranulocytosis. The causes of this, and of its precursor neutropenia, are largely unknown, although genetic factors have an important role. We sought risk alleles for clozapine-associated neutropenia in a sample of 66 cases and 5583 clozapine-treated controls, through a genome-wide association study (GWAS), imputed human leukocyte antigen (HLA) alleles, exome array and copy-number variation (CNV) analyses. We then combined associated variants in a meta-analysis with data from the Clozapine-Induced Agranulocytosis Consortium (up to 163 cases and 7970 controls). In the largest combined sample to date, we identified a novel association with rs149104283 (odds ratio (OR)=4.32, P=1.79 × 10−8), intronic to transcripts of SLCO1B3 and SLCO1B7, members of a family of hepatic transporter genes previously implicated in adverse drug reactions including simvastatin-induced myopathy and docetaxel-induced neutropenia. Exome array analysis identified gene-wide associations of uncommon non-synonymous variants within UBAP2 and STARD9. We additionally provide independent replication of a previously identified variant in HLA-DQB1 (OR=15.6, P=0.015, positive predictive value=35.1%). These results implicate biological pathways through which clozapine may act to cause this serious adverse effec
    • 

    corecore