1,332 research outputs found
Pairing correlations beyond the mean field
We discuss dynamical pairing correlations in the context of configuration
mixing of projected self-consistent mean-field states, and the origin of a
divergence that might appear when such calculations are done using an energy
functional in the spirit of a naive generalized density functional theory.Comment: Proceedings of the XIII Nuclear Physics Workshop ``Maria and Pierre
Curie'' on ``Pairing and beyond - 50 years of the BCS model'', held at
Kazimierz Dolny, Poland, September 27 - October 1, 2006. Int. J. Mod. Phys.
E, in prin
Fine structure of alpha decay in odd nuclei
Using an alpha decay level scheme, an explanation for the fine structure in
odd nuclei is evidenced by taking into account the radial and rotational
couplings between the unpaired nucleon and the core of the decaying system. It
is stated that the experimental behavior of the alpha decay fine structure
phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review
Subthreshold K+ production in deuteron and alpha induced nuclear reactions
Double differential cross sections have been measured for pi+ and K+ emitted
around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15
GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an
alpha projectile instead of a deuteron whereas the K+ yield increases by a
factor of about 4. According to transport calculations, the K+ enhancement
depends both on the number of hadron-hadron collisions and on the energy
available in those collisions: their center-of-mass energy increases with
increasing number of projectile nucleons
Solution to Satisfiability problem by a complete Grover search with trapped ions
The main idea in the original Grover search (Phys. Rev. Lett. 79, 325 (1997))
is to single out a target state containing the solution to a search problem by
amplifying the amplitude of the state, following the Oracle's job, i.e., a
black box giving us information about the target state. We design quantum
circuits to accomplish a complete Grover search involving both the Oracle's job
and the amplification of the target state, which are employed to solve
Satisfiability (SAT) problems. We explore how to carry out the quantum circuits
by currently available ion-trap quantum computing technology.Comment: 14 pages, 6 figure
Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4
Extensive X-ray and neutron scattering experiments and additional
transmission electron microscopy results reveal the partial decomposition of
Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically
realized during the annealing process required to create a superconducting
state. Unlike a typical situation in which a disordered secondary phase results
in diffuse powder scattering, a serendipitous match between the in-plane
lattice constant of NCCO and the lattice constant of one of the decomposition
products, (Nd,Ce)2O3, causes the secondary phase to form an oriented,
quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from
the secondary phase appear at rational positions (H,K,0) in the reciprocal
space of NCCO. Additionally, because of neodymium paramagnetism, the
application of a magnetic field increases the low-temperature intensity
observed at these positions via neutron scattering. Such effects may mimic the
formation of a structural superlattice or the strengthening of
antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified
through careful and systematic experimentation. For typical reduction
conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase
layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100
angstromsthick. The presence of the secondary phase should also be taken into
account in the analysis of other experiments on NCCO, such as transport
measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.
Field-Induced Uniform Antiferromagnetic Order Associated with Superconductivity in PrLaCeCuO
Strong correlation between field-induced antiferromagnetic (AF) order and
superconductivity is demonstrated for an electron-doped cuprate superconductor,
PrLaCeCuO (PLCCO). In addition to the specimen with
(which is close to the AF phase boundary, ), we show that
the one with ( K at zero field) also exhibits the
field-induced AF order with a reduced magnitude of the induced moment. The
uniform muon Knight shift at a low magnetic field ( Oe) indicates
that the AF order is not localized within the cores of flux lines, which is in
a marked contrast with theoretical prediction for hole-doped cuprates. The
presence of anomalous non-diagonal hyperfine coupling between muons and Pr ions
is also demonstrated in detail.Comment: 8 pages, 5 figures, to be published in J. Phys. Soc. Jp
On the decay of deformed actinide nuclei
decay through a deformed potential barrier produces significant
mixing of angular momenta when mapped from the nuclear interior to the outside.
Using experimental branching ratios and either semi-classical or
coupled-channels transmission matrices, we have found that there is a set of
internal amplitudes which are essentially constant for all even--even actinide
nuclei. These same amplitudes also give good results for the known anisotropic
particle emission of the favored decays of odd nuclei in the same mass
region.
PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures
uuencoded gz-compressed .tar file To appear in Physical Review Letter
Review of SIS Experimental Results on Strangeness
>A review of meson emission in heavy ion collisions at incident energies
around 1 -- 2 GeV is presented. It is shown how the shape of the
spectra and the various particle yields vary with system size, with centrality
and with incident energy. A statistical model assuming thermal and chemical
equilibrium and exact strangeness conservation (i.e. strangeness conservation
per collision) explains most of the observed features.
Emphasis is put onto the study of and emission. In the framework
of this statistical model it is shown that the experimentally observed equality
of and rates at threshold corrected energies is due to a crossing of two excitation functions. Furthermore,
the independence of the to ratio on the number of participating
nucleons observed between 1 and 10 GeV is consistent with this model.
The observed flow effects are beyond the scope of this model.Comment: 10 pages, 9 figures, Strangeness 2000, V International Conference on
Strangeness in Quark Matter, July, 2000, Berkeley, Californi
Raman light scattering study and microstructural analysis of epitaxial films of the electron-doped superconductor La_{2-x}Ce_{x}CuO_{4}
We present a detailed temperature-dependent Raman light scattering study of
optical phonons in molecular-beam-epitaxy-grown films of the electron-doped
superconductor La_{2-x}Ce_{x}CuO_{4} close to optimal doping (x ~ 0.08, T_c =
29 K and x ~ 0.1, T_c = 27 K). The main focus of this work is a detailed
characterization and microstructural analysis of the films. Based on
micro-Raman spectroscopy in combination with x-ray diffraction,
energy-dispersive x-ray analysis, and scanning electron microscopy, some of the
observed phonon modes can be attributed to micron-sized inclusions of Cu_{2}O.
In the slightly underdoped film (x ~ 0.08), both the Cu_{2}O modes and others
that can be assigned to the La_{2-x}Ce_{x}CuO_{4} matrix show pronounced
softening and narrowing upon cooling below T ~ T_c. Based on control
measurements on commercial Cu_{2}O powders and on a comparison to prior Raman
scattering studies of other high-temperature superconductors, we speculate that
proximity effects at La_{2-x}Ce_{x}CuO_{4}/Cu_{2}O interfaces may be
responsible for these anomalies. Experiments on the slightly overdoped
La_{2-x}Ce_{x}CuO_{4} film (x ~ 0.1) did not reveal comparable phonon
anomalies.Comment: 7 pages, 8 figure
- …
