271 research outputs found

    Effects of osmotic and matric potential on radial growth and accumulation of endogenous reserves in three isolates of Pochonia chlamydosporia

    Get PDF
    For the first time, the effects of varying osmotic and matric potential on fungal radial growth and accumulation of polyols were studied in three isolates of Pochonia chlamydosporia. Fungal radial growth was measured on potato dextrose agar modified osmotically using potassium chloride or glycerol. PEG 8000 was used to modify matric potential. When plotted, the radii of the colonies were found to grow linearly with time, and regression was applied to estimate the radial growth rate (mm day-1). Samples of fresh mycelia from 25-day-old cultures were collected and the quantity (mg g-1 fresh biomass) of four polyols (glycerol, erythritol, arabitol and mannitol) and one sugar (glucose) was determined using HPLC. Results revealed that fungal radial growth rates decreased with increased osmotic or matric stress. Statistically significant differences in radial growth were found between isolates in response to matric stress (P<0.006) but not in response to osmotic stress (P=0.759). Similarly, differences in the total amounts of polyols accumulated by the fungus were found between isolates in response to matric stress (P<0.001), but not in response to osmotic stress (P=0.952). Under water stress, the fungus accumulated a combination of different polyols important in osmoregulation, which depended on the solute used to generate the stress. Arabitol and glycerol were the main polyols accumulated in osmotically modified media, whereas erythritol was the main polyol that was accumulated in media amended with PEG. The results found that Pochonia chlamydosporia may use different osmoregulation mechanisms to overcome osmotic and matric stresses

    Understanding the effect of postharvest tomato temperatures on two toxigenic Alternaria spp. strains: growth, mycotoxins and cell-wall integrity-related gene expression

    Get PDF
    BackgroundTomato fruits are susceptible to Alternaria spp. spoilage. A correct postharvest management is necessary to prevent mould growth and mycotoxin accumulation, being the temperature one of the main factors. The effect of different postharvest temperatures (5, 12, 25 and 35 °C) on growth, mycotoxin production and a stress-related gene expression by two Alternaria spp. was assessed. ResultsGrowth rates decreased rapidly when temperature was higher than the optimum (25 °C), while a gradual reduction was detected at lower temperatures. Tenuazonic acid (TeA) was strongly synthesised at all temperatures evaluated, with a maximum between 12 and 25 °C. Alternariol monomethyl ether (AME) was produced only at the two lowest temperatures; with a peak at 12 °C. Regarding the expression of the stress-related RHO1 gene, during active fungal growth both Alternaria spp. showed more copies of the gene as temperature increased. At the stationary phase, the RHO1 gene expression was significantly higher at 12 °C, coinciding with AME highest accumulation. ConclusionChanges on temperatures related to different postharvest stages of tomato fruits markedly affect toxigenic Alternaria spp. The highest levels of both mycotoxins were recorded at 12 °C, a common storage temperature for tomato fruit. Additionally, an association between alternariols biosynthesis and the cell wall integrity pathway was noticed in relation to temperature, suggesting that temperature may act as stressor stimulating the RHO1 gene expression, which in turn triggers this mycotoxin synthesis. These results will be useful in developing new strategies to efficiently control Alternaria spoilage in tomato fruit and by-products.Fil: Da Cruz Cabral, Lucía Mariana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgånica; Argentina. Universidad de Extremadura; EspañaFil: Rodríguez, Alicia. Universidad de Extremadura; EspañaFil: Delgado, Josué. Universidad de Extremadura; EspañaFil: Patriarca, Andrea Rosana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgånica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botånica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botånica; Argentin

    Modelling a two-dimensional spatial distribution of mycotoxin concentration in bulk commodities to design effective and efficient sample selection strategies

    Get PDF
    Mycotoxins in agricultural commodities are a hazard to human and animal health. Their heterogeneous spatial distribution in bulk storage or transport makes it particularly difficult to design effective and efficient sampling plans. There has been considerable emphasis on identifying the different sources of uncertainty associated with mycotoxin concentration estimations, but much less on identifying the effect of the spatial location of the sampling points. This study used a two-dimensional statistical modelling approach to produce detailed information on appropriate sampling strategies for surveillance of mycotoxins in raw food commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in large lots of grain in storage or bulk transport. The aim was to simulate a range of plausible distributions of mycotoxins in grain from a set of parameters characterising the distributions. For this purpose, a model was developed to generate data sets which were repeatedly sampled to investigate the effect that sampling strategy and the number of incremental samples has on determining the statistical properties of mycotoxin concentration. Results showed that, for most sample sizes, a regular grid proved to be more consistent and accurate in the estimation of the mean concentration of DON, which suggests that regular sampling strategies should be preferred to random sampling, where possible. For both strategies, the accuracy of the estimation of the mean concentration increased significantly up to sample sizes of 40-60 (depending on the simulation). The effect of sample size was small when it exceeded 60 points, which suggests that the maximum sample size required is of this order. Similar conclusions about the sample size apply to OTA, although the difference between regular and random sampling was small and probably negligible for most sample sizes

    Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent Candida sake CPA‐1 on grapes

    Get PDF
    Biocontrol agents have become componentsof integrated crop protection systemsfor controlling economically important fungal pathogens.Candida sakeCPA-1 is abiocontrol agent of fungal pathogens of fruits, both pre- and post-harvest. Whilethe efficacy of different formulations have been examined previously, few studieshave considered the resilience of different formulations under changing climaticconditions of elevated temperature, drought stress and increased atmospheric CO2.This study examined the effect of (a) temperature9RH9elevated CO2(400vs1000 ppm) on the temporal establishment and viability of two dry and one liquidC. sakeCPA-1 formulations on grape berry surfaces; (b) temperature stress (25vs35°C); and (c) elevated CO2levels. Results indicated that temperature, RH and CO2concentration influenced the establishment and viability of the formulations butthere was no significant difference between formulations. For the combined three-component factors, increased temperature (35°C) and lower RH (40%) reduced theviable populations on grapes. The interaction with elevated CO2improved theestablishment of viable populations of the formulations tested. Viable populationsgreater than Log 4 CFUs per g were recovered from the grape surfaces suggestingthat these had conserved resilience for control ofBotrytisrot in grapes.info:eu-repo/semantics/acceptedVersio

    Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using the Bioscreen C

    Get PDF
    Environmental resilience of biocontrol microorganisms has been a major bottleneck in the development of effective formulations. Candida sake is an effective biocontrol agent (BCA) against Penicillium expansum, Botrytis cinerea or Rhizopus stolonifer, and different formulations of the BCA have been optimised recently. The objective of this study was to compare the relative tolerance of different dry and liquid formulations of the biocontrol yeast C. sake CPA-1 to interacting environmental conditions using the Bioscreen C. Initially, the use of this automated turbidimetric method was optimised for use with different formulations of the biocontrol yeast. The best growth curves were obtained for the C. sake CPA-1 strain when grown in a synthetic grape juice medium under continuous shaking and with an initial concentration of 105 CFUs ml−1. All the formulations showed a direct relationship between optical density values and yeast concentrations. Temperature (15–30 °C) and water activity (aw; 0.94–0.99) influenced the yeast resilience most profoundly, whereas the effect of pH (3–7) was minimal. In general, the liquid formulation grew faster in more interacting environmental conditions but only the yeast cells in the dry potato starch formulation could grow in some stress conditions. This rapid screening method can be used for effective identification of the resilience of different biocontrol formulations under interacting ecological abiotic conditions.info:eu-repo/semantics/acceptedVersio

    Impact of climate change environmental conditions on the resilience of different formulations of the biocontrol agent Candida sake CPA‐1 on grapes

    Get PDF
    Biocontrol agents have become components of integrated crop protection systems for controlling economically important fungal pathogens. Candida sake CPA‐1 is a biocontrol agent of fungal pathogens of fruits, both pre‐ and post‐harvest. While the efficacy of different formulations have been examined previously, few studies have considered the resilience of different formulations under changing climatic conditions of elevated temperature, drought stress and increased atmospheric CO2. This study examined the effect of (a) temperature × RH × elevated CO2 (400 vs 1000 ppm) on the temporal establishment and viability of two dry and one liquid C. sake CPA‐1 formulations on grape berry surfaces; (b) temperature stress (25 vs 35°C); and (c) elevated CO2 levels. Results indicated that temperature, RH and CO2 concentration influenced the establishment and viability of the formulations but there was no significant difference between formulations. For the combined three‐component factors, increased temperature (35°C) and lower RH (40%) reduced the viable populations on grapes. The interaction with elevated CO2 improved the establishment of viable populations of the formulations tested. Viable populations greater than Log 4 CFUs per g were recovered from the grape surfaces suggesting that these had conserved resilience for control of Botrytis rot in grapes

    Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using the Bioscreen C

    Get PDF
    Environmental resilience of biocontrol microorganisms has been a major bottleneck in the development of effective formulations. Candida sake is an effective biocontrol agent (BCA) against Penicillium expansum, Botrytis cinerea or Rhizopus stolonifer, and different formulations of the BCA have been optimised recently. The objective of this study was to compare the relative tolerance of different dry and liquid formulations of the biocontrol yeast C. sake CPA-1 to interacting environmental conditions using the Bioscreen C. Initially, the use of this automated turbidimetric method was optimised for use with different formulations of the biocontrol yeast. The best growth curves were obtained for the C. sake CPA-1 strain when grown in a synthetic grape juice medium under continuous shaking and with an initial concentration of 105 CFUs ml−1. All the formulations showed a direct relationship between optical density values and yeast concentrations. Temperature (15–30 °C) and water activity (aw; 0.94–0.99) influenced the yeast resilience most profoundly, whereas the effect of pH (3–7) was minimal. In general, the liquid formulation grew faster in more interacting environmental conditions but only the yeast cells in the dry potato starch formulation could grow in some stress conditions. This rapid screening method can be used for effective identification of the resilience of different biocontrol formulations under interacting ecological abiotic conditions

    Safe food and feed through an integrated toolbox for mycotoxin management: the MyToolBox approach

    Get PDF
    There is a pressing need to mobilise the wealth of knowledge from the international mycotoxin research conductedover the past 25-30 years, and to perform cutting-edge research where knowledge gaps still exist. This knowledgeneeds to be integrated into affordable and practical tools for farmers and food processors along the chain inorder to reduce the risk of mycotoxin contamination of crops, feed and food. This is the mission of MyToolBox – a four-year project which has received funding from the European Commission. It mobilises a multi-actorpartnership (academia, farmers, technology small and medium sized enterprises, food industry and policystakeholders) to develop novel interventions aimed at achieving a significant reduction in crop losses due tomycotoxin contamination. Besides a field-to-fork approach, MyToolBox also considers safe use options ofcontaminated batches, such as the efficient production of biofuels. Compared to previous efforts of mycotoxin reduction strategies, the distinguishing feature of MyToolBox is to provide the recommended measures to theend users along the food and feed chain in a web-based MyToolBox platform (e-toolbox). The project focuseson small grain cereals, maize, peanuts and dried figs, applicable to agricultural conditions in the EU and China. Crop losses using existing practices are being compared with crop losses after novel pre-harvest interventionsincluding investigation of genetic resistance to fungal infection, cultural control (e.g. minimum tillage or cropdebris treatment), the use of novel biopesticides suitable for organic farming, competitive biocontrol treatment and development of novel modelling approaches to predict mycotoxin contamination. Research into post-harvestmeasures includes real-time monitoring during storage, innovative sorting of crops using vision-technology, novelmilling technology and studying the effects of baking on mycotoxins at an industrial scale

    Overview of fungi and mycotoxin contamination in capsicum pepper and in its derivatives

    Get PDF
    Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this work was to review the critical control points, with a focus on mycotoxin contamination, during the production, storage and distribution of Capsicum products from a safety perspective; outlining the important role of ecophysiological factors in stimulating or inhibiting mycotoxin biosynthesis in these food commodities. Moreover, the human health risks caused by the ingestion of peppers contaminated with mycotoxins were also reviewed. Overall, Capsicum and its derivative-products are highly susceptible to contamination by mycotoxins. Pepper crop production and further transportation, processing and storage are crucial for production of safe food.Chilean National Commission for Scientific and Technological Research (CONICYT) which supports the J.C. PhD grant no 21181445, by Universidad de La Frontera (Temuco, Chile) with partial funding from the Project DIUFRO DI18-0121 lead by C.S., and by the Portuguese Foundation for Science and Technology (FCT) (UID/BIO/04469/2013 unit), COMPETE 2020 (POCI-01-0145-FEDER-006684) and the BioTecNorte operation (NORTE-01-0145-FEDER-000004info:eu-repo/semantics/publishedVersio

    Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination

    Get PDF
    Poor storage of cereals, such as maize can lead to both nutritional losses and mycotoxin contamination. The aim of this study was to examine the respiration of maize either naturally contaminated or inoculated with Aspergillus flavus to examine whether this might be an early and sensitive indicator of aflatoxin (AF) contamination and relative storability risk. We thus examined the relationship between different interacting storage environmental conditions (0.80–0.99 water activity (aw) and 15–35°C) in naturally contaminated and irradiated maize grain + A. flavus on relative respiration rates (R), dry matter losses (DMLs) and aflatoxin B1 and B2 (AFB1-B2) contamination. Temporal respiration and total CO2 production were analysed by GC-TCD, and results used to calculate the DMLs due to colonisation. AFs contamination was quantified at the end of the storage period by HPLC MS/MS. The highest respiration rates occurred at 0.95 aw and 30–35°C representing between 0.5% and 18% DMLs. Optimum AFs contamination was at the same aw at 30°C. Highest AFs contamination occurred in maize colonised only by A. flavus. A significant positive correlation between % DMLs and AFB1 contamination was obtained (r = 0.866, p < 0.001) in the irradiated maize treatments inoculated with A. flavus. In naturally contaminated maize + A. flavus inoculum loss of only 0.56% DML resulted in AFB1 contamination levels exceeding the EU legislative limits for food. This suggests that there is a very low threshold tolerance during storage of maize to minimise AFB1 contamination. This data can be used to develop models that can be effectively used in enhancing management for storage of maize to minimise risks of mycotoxin contamination
    • 

    corecore