8,031 research outputs found
Numerical Control Machine Data Manual
Numerical Control Machine Data Manual provides programmers with specific information for various types and sizes of numerical control machine tools and auxiliary equipment
Manufacturing contamination prevention handbook
Manufacturing management discipline handbook concerning contamination prevention may present principles and guidelines which can be adopted for industrial and commercial manufacturer usage. Contamination prevention program is categorized into three basic aspects: initial prevention; control of amount of unpreventable contamination; and detection and elimination of remaining contamination
Structural load challenges during space shuttle development
The challenges that resulted from the unique configuration of the space shuttle and capabilities developed to meet these challenges are described. The methods and the organization that were developed to perform dynamic loads analyses on the space shuttle configuration and to assess dynamic data developed after design are discussed. Examples are presented from the dynamic loads analysis of the lift-off and maximum dynamic pressure portion of ascent. Also shown are orbital flight test results, for which selected predicted responses are compared to measured data for the lift-off and high-dynamic-pressure times of ascent. These results have generally verified the design analysis. However, subscale testing was found to be deficient in predicting full-scale results in two areas: the ignition overpressure at lift-off and the aerodynamics/plume interactions at high-q boost. In these areas, the results of the flight test program were accommodated with no impact to the vehicle design
Dynamic behavior of stochastic gene expression models in the presence of bursting
This paper considers the behavior of discrete and continuous mathematical
models for gene expression in the presence of transcriptional/translational
bursting. We treat this problem in generality with respect to the distribution
of the burst size as well as the frequency of bursting, and our results are
applicable to both inducible and repressible expression patterns in prokaryotes
and eukaryotes. We have given numerous examples of the applicability of our
results, especially in the experimentally observed situation that burst size is
geometrically or exponentially distributed.Comment: 22 page
Thermal expansion properties of composite materials
Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications
Stereoscopic Machine-Vision System Using Projected Circles
A machine-vision system capable of detecting obstacles large enough to damage or trap a robotic vehicle is undergoing development. The system includes (1) a pattern generator that projects concentric circles of laser light forward onto the terrain, (2) a stereoscopic pair of cameras that are aimed forward to acquire images of the circles, (3) a frame grabber and digitizer for acquiring image data from the cameras, and (4) a single-board computer that processes the data. The system is being developed as a prototype of machine- vision systems to enable robotic vehicles ( rovers ) on remote planets to avoid craters, large rocks, and other terrain features that could capture or damage the vehicles. Potential terrestrial applications of systems like this one could include terrain mapping, collision avoidance, navigation of robotic vehicles, mining, and robotic rescue. This system is based partly on the same principles as those of a prior stereoscopic machine-vision system in which the cameras acquire images of a single stripe of laser light that is swept forward across the terrain. However, this system is designed to afford improvements over some of the undesirable features of the prior system, including the need for a pan-and-tilt mechanism to aim the laser to generate the swept stripe, ambiguities in interpretation of the single-stripe image, the time needed to sweep the stripe across the terrain and process the data from many images acquired during that time, and difficulty of calibration because of the narrowness of the stripe. In this system, the pattern generator does not contain any moving parts and need not be mounted on a pan-and-tilt mechanism: the pattern of concentric circles is projected steadily in the forward direction. The system calibrates itself by use of data acquired during projection of the concentric-circle pattern onto a known target representing flat ground. The calibration- target image data are stored in the computer memory for use as a template in processing terrain images. During operation on terrain, the images acquired by the left and right cameras are analyzed. The analysis includes (1) computation of the horizontal and vertical dimensions and the aspect ratios of rectangles that bound the circle images and (2) comparison of these aspect ratios with those of the template. Coordinates of distortions of the circles are used to identify and locate objects. If the analysis leads to identification of an object of significant size, then stereoscopicvision algorithms are used to estimate the distance to the object. The time taken in performing this analysis on a single pair of images acquired by the left and right cameras in this system is a fraction of the time taken in processing the many pairs of images acquired in a sweep of the laser stripe across the field of view in the prior system. The results of the analysis include data on sizes and shapes of, and distances and directions to, objects. Coordinates of objects are updated as the vehicle moves so that intelligent decisions regarding speed and direction can be made. The results of the analysis are utilized in a computational decision-making process that generates obstacle-avoidance data and feeds those data to the control system of the robotic vehicle
Numerical models for the circumstellar medium around Betelgeuse
The nearby red supergiant (RSG) Betelgeuse has a complex circumstellar medium
out to at least 0.5 parsecs from its surface, shaped by its mass-loss history
within the past 0.1 Myr, its environment, and its motion through the
interstellar medium (ISM). In principle its mass-loss history can be
constrained by comparing hydrodynamic models with observations. Observations
and numerical simulations indicate that Betelgeuse has a very young bow shock,
hence the star may have only recently become a RSG. To test this possibility we
calculated a stellar evolution model for a single star with properties
consistent with Betelgeuse. We incorporated the resulting evolving stellar wind
into 2D hydrodynamic simulations to model a runaway blue supergiant (BSG)
undergoing the transition to a RSG near the end of its life. The collapsing BSG
wind bubble induces a bow shock-shaped inner shell which at least superficially
resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is
the larger-scale retreating bow shock generated by the now defunct BSG wind's
interaction with the ISM. We investigate whether this outer shell could explain
the bar feature located (at least in projection) just in front of Betelgeuse's
bow shock.Comment: 5 pages, 3 figures; to appear in proceedings of the Betelgeuse 2012
Workshop, Paris, Nov. 201
Diamond Sheet: A new diamond tool material
Diamond sheet is termed a diamond tool material because it is not a cutting tool, but rather a new material from which a variety of different tools may be fabricated. In appearance and properties, it resembles a sheet of copper alloy with diamond abrasive dispersed throughout it. It is capable of being cut, formed, and joined by conventional methods, and subsequently used for cutting as a metal bonded diamond tool. Diamond sheet is normally made with industrial diamond as the abrasive material. The metal matrix in diamond sheet is a medium hard copper alloy which has performed well in most applications. This alloy has the capability of being made harder or softer if specific cutting conditions require it. Other alloys have also been used including a precipitation hardened aluminum alloy with very free cutting characteristics. The material is suitable for use in a variety of cutting, surfacing, and ring type tools, as well as in such mundane items as files and sandpaper. It can also be used as a bearing surface (diamond to diamond) and in wear resistant surfaces
Accurate photometry of extended spherically symmetric sources
We present a new method to derive reliable photometry of extended spherically
symmetric sources from {\it HST} images (WFPC2, ACS/WFC and NICMOS/NIC2
cameras), extending existing studies of point sources and marginally resolved
sources. We develop a new approach to accurately determine intrinsic sizes of
extended spherically symmetric sources, such as star clusters in galaxies
beyond the Local Group (at distances <~ 20 Mpc), and provide a detailed
cookbook to perform aperture photometry on such sources, by determining
size-dependent aperture corrections (ACs) and taking sky oversubtraction as a
function of source size into account. In an extensive Appendix, we provide the
parameters of polynomial relations between the FWHM of various input profiles
and those obtained by fitting a Gaussian profile (which we have used for
reasons of computational robustness, although the exact model profile used is
irrelevant), and between the intrinsic and measured FWHM of the cluster and the
derived AC. Both relations are given for a number of physically relevant
cluster light profiles, intrinsic and observational parameters. AC relations
are provided for a wide range of apertures. Depending on the size of the source
and the annuli used for the photometry, the absolute magnitude of such extended
objects can be underestimated by up to 3 mag, corresponding to an error in mass
of a factor of 15. We carefully compare our results to those from the more
widely used DeltaMag method, and find an improvement of a factor of 3--40 in
both the size determination and the AC.Comment: The paper is accepted for publication in A&A, Section 13
(Observational Techniques, published electronically). The published version
contains one example table per appendix. A version of the paper containing
all tables as well as all data in electronical form are available
http://www.astro.physik.uni-goettingen.de/~galev/panders/Sizes_AC
- …
