160 research outputs found

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3

    Modal Provability Foundations for Argumentation Networks

    Full text link

    A Generalization of Martin's Axiom

    Get PDF
    We define the ℵ1.5\aleph_{1.5} chain condition. The corresponding forcing axiom is a generalization of Martin's Axiom and implies certain uniform failures of club--guessing on ω1\omega_1 that don't seem to have been considered in the literature before.Comment: 36 page

    Indestructibility of Vopenka's Principle

    Full text link
    We show that Vopenka's Principle and Vopenka cardinals are indestructible under reverse Easton forcing iterations of increasingly directed-closed partial orders, without the need for any preparatory forcing. As a consequence, we are able to prove the relative consistency of these large cardinal axioms with a variety of statements known to be independent of ZFC, such as the generalised continuum hypothesis, the existence of a definable well-order of the universe, and the existence of morasses at many cardinals.Comment: 15 pages, submitted to Israel Journal of Mathematic

    Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

    Get PDF
    We examine some of Connes' criticisms of Robinson's infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes' own earlier work in functional analysis. Connes described the hyperreals as both a "virtual theory" and a "chimera", yet acknowledged that his argument relies on the transfer principle. We analyze Connes' "dart-throwing" thought experiment, but reach an opposite conclusion. In S, all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being "virtual" if it is not definable in a suitable model of ZFC. If so, Connes' claim that a theory of the hyperreals is "virtual" is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren't definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in his Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes' criticism of virtuality. We analyze the philosophical underpinnings of Connes' argument based on Goedel's incompleteness theorem, and detect an apparent circularity in Connes' logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace (featured on the front cover of Connes' magnum opus) and the Hahn-Banach theorem, in Connes' own framework. We also note an inaccuracy in Machover's critique of infinitesimal-based pedagogy.Comment: 52 pages, 1 figur

    A ramsey theorem for trees, with an application to Banach spaces

    No full text

    The axiom of determinacy and the prewellordering property

    No full text
    Let ω = (0,1,2,...) be the set of natural numbers and R = ω^ω the set of all functions from ω into ω, or for simplicity reals. A product space is of the form X = X_1 x X_2 x ... x X_k, where X_1 = ω or R. Subsets of these product spaces are called pointsets. A boldface pointclass is a class of pointsets closed under continuous preimages and containing all clopen pointsets (in all product spaces)
    • …
    corecore