3,555 research outputs found

    Renormalization of an effective Light-Cone QCD-inspired theory for the Pion and other Mesons

    Get PDF
    The renormalization of the effective QCD-Hamiltonian theory for the quark-antiquark channel is performed in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The fixed point-Hamiltonian brings the renormalization conditions as well as the counterterms that render the theory finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD-Hamiltonian comes from the pion mass and radius, for a given constituent quark mass. The 1s and excited 2s states of uˉq\bar u q are calculated as a function of the mass of the quark qq being s, c or b, and compared to the experimental values.Comment: 39 pages, 10 figure

    Quantum Master Equation of Particle in Gas Environment

    Full text link
    The evolution of the reduced density operator ρ\rho of Brownian particle is discussed in single collision approach valid typically in low density gas environments. This is the first succesful derivation of quantum friction caused by {\it local} environmental interactions. We derive a Lindblad master equation for ρ\rho, whose generators are calculated from differential cross section of a single collision between Brownian and gas particles, respectively. The existence of thermal equilibrium for ρ\rho is proved. Master equations proposed earlier are shown to be particular cases of our one.Comment: 6 pages PlainTeX, 23-March-199

    Noncommutative Gauge Theory on the q-Deformed Euclidean Plane

    Full text link
    In this talk we recall some concepts of Noncommutative Gauge Theories. In particular, we discuss the q-deformed two-dimensional Euclidean Plane which is covariant with respect to the q-deformed Euclidean group. A Seiberg-Witten map is constructed to express noncommutative fields in terms of their commutative counterparts.Comment: 5 pages; Talk given by Frank Meyer at the 9th Adriatic Meeting, September 4th-14th, 2003, Dubrovni

    Finiteness Conditions for Light-Front Hamiltonians

    Get PDF
    In the context of simple models, it is shown that demanding finiteness for physical masses with respect to a longitudinal cutoff, can be used to fix the ambiguity in the renormalization of fermions masses in the Hamiltonian light-front formulation. Difficulties that arise in applications of finiteness conditions to discrete light-cone quantization are discussed.Comment: REVTEX, 9 page

    Melting of hexagonal skyrmion states in chiral magnets

    Get PDF
    Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359–61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing

    Tube Model for Light-Front QCD

    Get PDF
    We propose the tube model as a first step in solving the bound state problem in light-front QCD. In this approach we neglect transverse variations of the fields, producing a model with 1+1 dimensional dynamics. We then solve the two, three, and four particle sectors of the model for the case of pure glue SU(3). We study convergence to the continuum limit and various properties of the spectrum.Comment: 29 page

    Universal description of S-wave meson spectra in a renormalized light-cone QCD-inspired model

    Full text link
    A light-cone QCD-inspired model, with the mass squared operator consisting of a harmonic oscillator potential as confinement and a Dirac-delta interaction, is used to study the S-wave meson spectra. The two parameters of the harmonic potential and quark masses are fixed by masses of rho(770), rho(1450), J/psi, psi(2S), K*(892) and B*. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction. The model presents an universal and satisfactory description of both singlet and triplet states of S-wave mesons and the corresponding radial excitations.Comment: RevTeX, 17 pages, 7 eps figures, to be published in Phys. Rev.

    Coordinate time and proper time in the GPS

    Get PDF
    The Global Positioning System (GPS) provides an excellent educational example as to how the theory of general relativity is put into practice and becomes part of our everyday life. This paper gives a short and instructive derivation of an important formula used in the GPS, and is aimed at graduate students and general physicists. The theoretical background of the GPS (see \cite{ashby}) uses the Schwarzschild spacetime to deduce the {\it approximate} formula, ds/dt\approx 1+V-\frac{|\vv|^2}{2}, for the relation between the proper time rate ss of a satellite clock and the coordinate time rate tt. Here VV is the gravitational potential at the position of the satellite and \vv is its velocity (with light-speed being normalized as c=1c=1). In this note we give a different derivation of this formula, {\it without using approximations}, to arrive at ds/dt=\sqrt{1+2V-|\vv|^2 -\frac{2V}{1+2V}(\n\cdot\vv)^2}, where \n is the normal vector pointing outward from the center of Earth to the satellite. In particular, if the satellite moves along a circular orbit then the formula simplifies to ds/dt=\sqrt{1+2V-|\vv|^2}. We emphasize that this derivation is useful mainly for educational purposes, as the approximation above is already satisfactory in practice.Comment: 5 pages, revised, over-over-simplified... Does anyone care that the GPS uses an approximate formula, while a precise one is available in just a few lines??? Physicists don'

    Quantum Macrostates, Equivalence of Ensembles and an H-Theorem

    Full text link
    Before the thermodynamic limit, macroscopic averages need not commute for a quantum system. As a consequence, aspects of macroscopic fluctuations or of constrained equilibrium require a careful analysis, when dealing with several observables. We propose an implementation of ideas that go back to John von Neumann's writing about the macroscopic measurement. We apply our scheme to the relation between macroscopic autonomy and an H-theorem, and to the problem of equivalence of ensembles. In particular, we show how the latter is related to the asymptotic equipartition theorem. The main point of departure is an expression of a law of large numbers for a sequence of states that start to concentrate, as the size of the system gets larger, on the macroscopic values for the different macroscopic observables. Deviations from that law are governed by the entropy.Comment: 16 pages; v1 -> v2: Sec. 3 slightly rewritten, 2 references adde
    corecore