341 research outputs found

    New light on the ‘Drummer of Tedworth’: conflicting narratives of witchcraft in Restoration England

    Get PDF
    This paper presents a definitive text of hitherto little-known early documents concerning ‘The Drummer of Tedworth’, a poltergeist case that occurred in 1662-3 and became famous not least due to its promotion by Joseph Glanvill in his demonological work, Saducismus Triumphatus. On the basis of these and other sources, it is shown how responses to the events at Tedworth evolved from anxious piety on the part of their victim, John Mompesson, to confident apologetic by Glanvill, before they were further affected by the emergence of articulate scepticism about the case

    Disclination vortices in elastic media

    Full text link
    The vortex-like solutions are studied in the framework of the gauge model of disclinations in elastic continuum. A complete set of model equations with disclination driven dislocations taken into account is considered. Within the linear approximation an exact solution for a low-angle wedge disclination is found to be independent from the coupling constants of the theory. As a result, no additional dimensional characteristics (like the core radius of the defect) are involved. The situation changes drastically for 2\pi vortices where two characteristic lengths, l_\phi and l_W, become of importance. The asymptotical behaviour of the solutions for both singular and nonsingular 2\pi vortices is studied. Forces between pairs of vortices are calculated.Comment: 13 pages, published versio

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    An elastoplastic theory of dislocations as a physical field theory with torsion

    Full text link
    We consider a static theory of dislocations with moment stress in an anisotropic or isotropic elastoplastical material as a T(3)-gauge theory. We obtain Yang-Mills type field equations which express the force and the moment equilibrium. Additionally, we discuss several constitutive laws between the dislocation density and the moment stress. For a straight screw dislocation, we find the stress field which is modified near the dislocation core due to the appearance of moment stress. For the first time, we calculate the localized moment stress, the Nye tensor, the elastoplastic energy and the modified Peach-Koehler force of a screw dislocation in this framework. Moreover, we discuss the straightforward analogy between a screw dislocation and a magnetic vortex. The dislocation theory in solids is also considered as a three-dimensional effective theory of gravity.Comment: 38 pages, 6 figures, RevTe

    Time-like flows of energy-momentum and particle trajectories for the Klein-Gordon equation

    Get PDF
    The Klein-Gordon equation is interpreted in the de Broglie-Bohm manner as a single-particle relativistic quantum mechanical equation that defines unique time-like particle trajectories. The particle trajectories are determined by the conserved flow of the intrinsic energy density which can be derived from the specification of the Klein-Gordon energy-momentum tensor in an Einstein-Riemann space. The approach is illustrated by application to the simple single-particle phenomena associated with square potentials.Comment: 14 pages, 11 figure

    Mappings of least Dirichlet energy and their Hopf differentials

    Full text link
    The paper is concerned with mappings between planar domains having least Dirichlet energy. The existence and uniqueness (up to a conformal change of variables in the domain) of the energy-minimal mappings is established within the class Hˉ2(X,Y)\bar{\mathscr H}_2(X, Y) of strong limits of homeomorphisms in the Sobolev space W1,2(X,Y)W^{1,2}(X, Y), a result of considerable interest in the mathematical models of Nonlinear Elasticity. The inner variation leads to the Hopf differential hzhzˉˉdzdzh_z \bar{h_{\bar{z}}} dz \otimes dz and its trajectories. For a pair of doubly connected domains, in which XX has finite conformal modulus, we establish the following principle: A mapping hHˉ2(X,Y)h \in \bar{\mathscr H}_2(X, Y) is energy-minimal if and only if its Hopf-differential is analytic in XX and real along the boundary of XX. In general, the energy-minimal mappings may not be injective, in which case one observes the occurrence of cracks in XX. Nevertheless, cracks are triggered only by the points in the boundary of YY where YY fails to be convex. The general law of formation of cracks reads as follows: Cracks propagate along vertical trajectories of the Hopf differential from the boundary of XX toward the interior of XX where they eventually terminate before making a crosscut.Comment: 51 pages, 4 figure

    Volterra Distortions, Spinning Strings, and Cosmic Defects

    Get PDF
    Cosmic strings, as topological spacetime defects, show striking resemblance to defects in solid continua: distortions, which can be classified into disclinations and dislocations, are line-like defects characterized by a delta function-valued curvature and torsion distribution giving rise to rotational and translational holonomy. We exploit this analogy and investigate how distortions can be adapted in a systematic manner from solid state systems to Einstein-Cartan gravity. As distortions are efficiently described within the framework of a SO(3) {\rlap{\supset}\times}} T(3) gauge theory of solid continua with line defects, we are led in a straightforward way to a Poincar\'e gauge approach to gravity which is a natural framework for introducing the notion of distorted spacetimes. Constructing all ten possible distorted spacetimes, we recover, inter alia, the well-known exterior spacetime of a spin-polarized cosmic string as a special case of such a geometry. In a second step, we search for matter distributions which, in Einstein-Cartan gravity, act as sources of distorted spacetimes. The resulting solutions, appropriately matched to the distorted vacua, are cylindrically symmetric and are interpreted as spin-polarized cosmic strings and cosmic dislocations.Comment: 24 pages, LaTeX, 9 eps figures; remarks on energy conditions added, discussion extended, version to be published in Class. Quantum Gra

    Progress in Classical and Quantum Variational Principles

    Full text link
    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics, in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis Principle is the classical limit of Schr\"{o}dinger's variational principle of wave mechanics, and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems

    The gauge theory of dislocations: static solutions of screw and edge dislocations

    Full text link
    We investigate the T(3)-gauge theory of static dislocations in continuous solids. We use the most general linear constitutive relations bilinear in the elastic distortion tensor and dislocation density tensor for the force and pseudomoment stresses of an isotropic solid. The constitutive relations contain six material parameters. In this theory both the force and pseudomoment stresses are asymmetric. The theory possesses four characteristic lengths l1, l2, l3 and l4 which are given explicitely. We first derive the three-dimensional Green tensor of the master equation for the force stresses in the translational gauge theory of dislocations. We then investigate the situation of generalized plane strain (anti-plane strain and plane strain). Using the stress function method, we find modified stress functions for screw and edge dislocations. The solution of the screw dislocation is given in terms of one independent length l1=l4. For the problem of an edge dislocation, only two characteristic lengths l2 and l3 arise with one of them being the same l2=l1 as for the screw dislocation. Thus, this theory possesses only two independent lengths for generalized plane strain. If the two lengths l2 and l3 of an edge dislocation are equal, we obtain an edge dislocation which is the gauge theoretical version of a modified Volterra edge dislocation. In the case of symmetric stresses we recover well known results obtained earlier.Comment: 33 pages, 17 figure
    corecore