167 research outputs found
Demonstration of Elemental Partitioning During Austenite Formation in Low-Carbon Aluminium alloyed steel
This work investigates the influence of aluminium, in solid solution, on austenite formation in a lowcarbon
aluminium alloyed (0.48 wt. %) steel during continuous heating. A thin section across an
untransformed ferrite and austenite interface was prepared for transmission electron microscopy by
focused ion beam milling. Microstructural characterization using imaging and elemental analysis
demonstrates that aluminium partitions from austenite to ferrite during very slow heating conditions,
stabilizing this latter phase and shifting the final transformation temperature for austenite formation (Ac3)Peer reviewe
The Sigma 13 (10-14) twin in alpha-Al2O3: A model for a general grain boundary
The atomistic structure and energetics of the Sigma 13 (10-14)[1-210]
symmetrical tilt grain boundary in alpha-Al2O3 are studied by first-principles
calculations based on the local-density-functional theory with a mixed-basis
pseudopotential method. Three configurations, stable with respect to
intergranular cleavage, are identified: one Al-terminated glide-mirror twin
boundary, and two O-terminated twin boundaries, with glide-mirror and two-fold
screw-rotation symmetries, respectively. Their relative energetics as a
function of axial grain separation are described, and the local electronic
structure and bonding are analysed. The Al-terminated variant is predicted to
be the most stable one, confirming previous empirical calculations, but in
contrast with high-resolution transmission electron microscopy observations on
high-purity diffusion-bonded bicrystals, which resulted in an O-terminated
structure.
An explanation of this discrepancy is proposed, based on the different
relative energetics of the internal interfaces with respect to the free
surfaces
EELS modelling of graphitisation
The impact of graphitisation-type processes on the carbon K-edge ELNES is explored for model systems using the CASTEP density functional theory code. For c lattice direction expansion, contraction of spectral peaks occurs between 20 and 27 eV above the edge onset, for a/b lattice dimension expansion spectral peaks are heavily compressed in terms of energy separation and are shifted towards the edge-onset, consistent with a 1/a^2 relationship. For a nanotube model system, it is shown that for higher curvature, an additional feature was observed in the spectrum ~5 eV, arguably consistent with ‘fullerene’-type character
The prismatic Sigma 3 (10-10) twin bounday in alpha-Al2O3 investigated by density functional theory and transmission electron microscopy
The microscopic structure of a prismatic twin
boundary in \aal2o3 is characterized theoretically by ab-initio
local-density-functional theory, and experimentally by spatial-resolution
electron energy-loss spectroscopy in a scanning transmission electron
microscope (STEM), measuring energy-loss near-edge structures (ELNES) of the
oxygen -ionization edge. Theoretically, two distinct microscopic variants
for this twin interface with low interface energies are derived and analysed.
Experimentally, it is demonstrated that the spatial and energetical resolutions
of present high-performance STEM instruments are insufficient to discriminate
the subtle differences of the two proposed interface variants. It is predicted
that for the currently developed next generation of analytical electron
microscopes the prismatic twin interface will provide a promising benchmark
case to demonstrate the achievement of ELNES with spatial resolution of
individual atom columns
Transmission electron microscopy of a model crystalline organic, theophylline
We report on the use of transmission electron microscopy (TEM) to analyse the diffraction patterns of the model crystalline organic theophylline to investigate beam damage in relation to changing accelerating voltage, sample temperature and TEM grid support films. We find that samples deposited on graphene film grids have the longest lifetimes when also held at -190 °C and imaged at 200 kV accelerating voltage. Finally, atomic lattice images are obtained in bright field STEM by working close to the estimated critical electron dose for theophylline
Analysis of Electron Beam Damage of Crystalline Pharmaceutical Materials by Transmission Electron Microscopy
We have studied the impact of transmission electron microscopy (TEM) and low dose electron diffraction on ten different crystalline pharmaceutical compounds, covering a diverse chemical space and with differing physical properties. The aim was to establish if particular chemical moieties were more susceptible to damage within the electron beam. We have measured crystalline diffraction patterns for each and indexed nine out of ten of them. Characteristic electron dosages are reported for each material, with no apparent correlation between chemical structure and stability within the electron beam. Such low dose electron diffraction protocols are suitable for the study of pharmaceutical compounds
Exploring backscattered imaging in low voltage FE-SEM
Contrast levels in backscattered SEM images were investigated, utilising stage deceleration for low voltage imaging and also electron energy filtering. Image contrast variations are explained via use of Monte Carlo simulations which can predict the optimum accelerating and filter voltages for imaging complex sample mixtures
Bovine Serum Albumin binding to CoCrMo nanoparticles and the influence on dissolution
CoCrMo alloys exhibit good mechanical properties, excellent biocompatibility and are widely utilised in orthopaedic joint replacements. Metal-on-metal hip implant degradation leads to the release of metal ions and nanoparticles, which persist through the implant's life and could be a possible cause of health complications. This study correlates preferential binding between proteins and metal alloy nanoparticles to the alloy's corrosion behaviour and the release of metal ions. TEM images show the formation of a protein corona in all particles immersed in albumin containing solutions. Only molybdenum release was significant in these tests, suggesting high dissolution of this element when CoCrMo alloy nanoparticles are produced as wear debris in the presence of serum albumin. The same trend was observed during extended exposure of molybdenum reference nanoparticles to albumin
- …
