346 research outputs found

    Dirac neutrino mixings from hidden μ−τ\mu-\tau symmetry

    Full text link
    We explore masses and mixings for Dirac neutrinos in models where lepton number is conserved, under the guidance of a hidden, but broken, μ−τ\mu-\tau exchange symmetry, that makes itself evident in the squared hermitian mass matrix. We study the parameter space in the most general theory as allowed by current neutrino oscillation experiment data. By using a general parameterization of the mass matrix which contains only observable parameters we stablish that the amount of breaking of the symmetry is in the range of the atmospheric mass scale, without regard to the neutrino hierarchy, the absolute neutrino mass and the Dirac CP phase. An estimate of the invisible branching ratio for a Higgs boson decaying into Dirac neutrinos, H→νν‾H\rightarrow\nu\overline{\nu} , is given and compared to recent measurements in this context.Comment: Some references adde

    Radion Cosmology in Theories with Universal Extra Dimensions

    Full text link
    We discuss cosmology of models with universal extra dimensions, where the Standard Model degrees of freedom live in a 4+n4+n dimensional brane, with nn compact and small extra spatial dimensions. In these models, the simplest way to obtain the conventional 4-dimensional Planck scale starting with a low string scale is to have also some larger extra dimensions, where only gravity propagates. In such theories, dimensional reduction generically leads to at least two radion fields, one associated with the total volume of the extra spatial dimensions, and the other with the ratio of the sizes of small and large extra dimensions. In this paper, we discuss the impact of the radion fields on cosmology. We emphasize various aspects of radion physics such as radion coupling to the Standard Model fields, bare and dressed radion masses during inflation, dynamical stabilization of radions during and after inflation, radion decay life time and its late dominance in thermal history of the Universe as well as its quantum fluctuations during inflation. We argue that models where the radion plays the role of an inflaton or the inflaton is a brane scalar field, run into problems. We then present a successful inflation model with bulk scalar fields that seems to have all the desired properties. We also briefly discuss the possibility of radion as a cold dark matter candidate.Comment: 37 pages + 3 figure

    Dynamical charge and spin density wave scattering in cuprate superconductor

    Full text link
    We show that a variety of spectral features in high-T_c cuprates can be understood from the coupling of charge carriers to some kind of dynamical order which we exemplify in terms of fluctuating charge and spin density waves. Two theoretical models are investigated which capture different aspects of such dynamical scattering. The first approach leaves the ground state in the disordered phase but couples the electrons to bosonic degrees of freedom, corresponding to the quasi singular scattering associated with the closeness to an ordered phase. The second, more phenomological approach starts from the construction of a frequency dependent order parameter which vanishes for small energies. Both theories capture scanning tunneling microscopy and angle-resoved photoemission experiments which suggest the protection of quasiparticles close to the Fermi energy but the manifestation of long-range order at higher frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy

    Type II Seesaw and a Gauge Model for the Bimaximal Mixing Explanation of Neutrino Puzzles

    Full text link
    We present a gauge model for the bimaximal mixing pattern among the neutrinos that explains both the atmospheric and solar neutrino data via large angle vacuum oscillation among the three known neutrinos. The model does not include righthanded neutrinos but additional Higgs triplets which acquire naturally small vev's due to the type II seesaw mechanism. A combination of global Le−Lμ−LτL_e-L_{\mu}-L_{\tau} and S3S_3 symmetries constrain the mass matrix for both charged leptons and neutrinos in such a way that the bimaximal pattern emerges naturally at the tree level and needed splittings among neutrinos at the one loop level. This model predicts observable branching ratios for τ→μμμ\tau\to \mu \mu\mu, which could be used to test it.Comment: Latex file, 8 pages, five figures include
    • …
    corecore