1,223 research outputs found

    Quasi-exact-solution of the Generalized Exe Jahn-Teller Hamiltonian

    Full text link
    We consider the solution of a generalized Exe Jahn-Teller Hamiltonian in the context of quasi-exactly solvable spectral problems. This Hamiltonian is expressed in terms of the generators of the osp(2,2) Lie algebra. Analytical expressions are obtained for eigenstates and eigenvalues. The solutions lead to a number of earlier results discussed in the literature. However, our approach renders a new understanding of ``exact isolated'' solutions

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio

    A note on wave set-up

    Get PDF
    Seaward of the breaker zone, the observations of Saville are in good qualitative agreement with the prediction that the mean surface level is increasingly depressed towards the shoreline

    Topological properties of Berry's phase

    Full text link
    By using a second quantized formulation of level crossing, which does not assume adiabatic approximation, a convenient formula for geometric terms including off-diagonal terms is derived. The analysis of geometric phases is reduced to a simple diagonalization of the Hamiltonian in the present formulation. If one diagonalizes the geometric terms in the infinitesimal neighborhood of level crossing, the geometric phases become trivial for any finite time interval TT. The topological interpretation of Berry's phase such as the topological proof of phase-change rule thus fails in the practical Born-Oppenheimer approximation, where a large but finite ratio of two time scales is involved.Comment: 9 pages. A new reference was added, and the abstract and the presentation in the body of the paper have been expanded and made more precis

    Peierls transition in the quantum spin-Peierls model

    Full text link
    We use the density matrix renormalization group method to investigate the role of longitudinal quantized phonons on the Peierls transition in the spin-Peierls model. For both the XY and Heisenberg spin-Peierls model we show that the staggered phonon order parameter scales as λ\sqrt{\lambda} (and the dimerized bond order scales as λ\lambda) as λ→0\lambda \to 0 (where λ\lambda is the electron-phonon interaction). This result is true for both linear and cyclic chains. Thus, we conclude that the Peierls transition occurs at λ=0\lambda=0 in these models. Moreover, for the XY spin-Peierls model we show that the quantum predictions for the bond order follow the classical prediction as a function of inverse chain size for small λ\lambda. We therefore conclude that the zero λ\lambda phase transition is of the mean-field type

    Some model experiments on continental shelf waves

    Get PDF
    This paper describes some model experiments that verify the theoretical form of continental shelf waves. Both the dispersion relationship and the positions of the orbital gyres are confirmed. The existence of a maximum frequency for each mode, with a corresponding zero group velocity, may be of significance for field observations

    Steep sharp-crested gravity waves on deep water

    Full text link
    A new type of steady steep two-dimensional irrotational symmetric periodic gravity waves on inviscid incompressible fluid of infinite depth is revealed. We demonstrate that these waves have sharper crests in comparison with the Stokes waves of the same wavelength and steepness. The speed of a fluid particle at the crest of new waves is greater than their phase speed.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Switching of Geometric Phase in Degenerate Systems

    Full text link
    The geometric and open path phases of a four-state system subject to time varying cyclic potentials are computed from the Schr\"{o}dinger equation. Fast oscillations are found in the non-adiabatic case. For parameter values such that the system possesses degenerate levels, the geometric phase becomes anomalous, undergoing a sign switch. A physical system to which the results apply is a molecular dimer with two interacting electrons. Additionally, the sudden switching of the geometric phase promises to be an efficient control in two-qubit quantum computing.Comment: 15 pages, 4 figures,accepted by Physics Letters A (2000

    Enhanced Electron Pairing in a Lattice of Berry Phase Molecules

    Full text link
    We show that electron hopping in a lattice of molecules possessing a Berry phase naturally leads to pairing. Our building block is a simple molecular site model inspired by C60_{60}, but realized in closer similarity with Na3_3. In the resulting model electron hopping must be accompanied by orbital operators, whose function is to switch on and off the Berry phase as the electron number changes. The effective hamiltonians (electron-rotor and electron-pseudospin) obtained in this way are then shown to exhibit a strong pairing phenomenon, by means of 1D linear chain case studies. This emerges naturally from numerical studies of small NN-site rings, as well as from a BCS-like mean-field theory formulation. The pairing may be explained as resulting from the exchange of singlet pairs of orbital excitations, and is intimately connected with the extra degeneracy implied by the Berry phase when the electron number is odd. The relevance of this model to fullerides, to other molecular superconductors, as well as to present and future experiments, is discussed.Comment: 30 pages, RevTe
    • …
    corecore