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ABSTRACT 

T his paper describes some model experiments that verify the theoretical form of con-
tinental shelf waves. Both the dispersion relati onship and the positions of the orbital gyres 
are confirmed. The existence of a maximum fr equency for each mode, with a corresponding 
zero group velocity, may be of signifi cance for fi eld observations. 

1 . Introduction. The rotation of the Earth, combined with uneven bottom 
topography, gives r ise to a distinct class of wave-the topographic Rossby wave. 
Such waves are due essentially to changes in potential vorticity when fluid 
elements are displaced up or down a slope. The waves tend to be propagated 
in one direction only, with shall ower water to the ri ght in the northern hemi-
sphere. 

Waves of this ki nd were emphasized by Reid (1958) when he studied edge-
waves over a beach of uniform gradient. Robinson ( 1964) has suggested that 
low-frequency waves, in which the frequency, a, is small compared with the 
Corioli s parameter, might account for some observations of the nonhydro-
static response of sea level to atmospheri c pressure in Australia (Hamon 1962, 
1963, 1966). Both Robinson (1964) and Mysak (1967, 1968) considered, for 
simplicity, waves of length much greater than the width of the continental 
margin. Buchwald and Adams ( 1968) have considered a model in which the 
depth over the shelf varied exponentiall y, and have, by neglecting the horizontal 
divergence (hence the vertical displacement of the free surface), obtained an 
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analytical soluti on. Some dispersion relationships for other types of off-shore 
topography have been calculated by Munk, et al. ( I 970 ). Some indications of 
shelf waves in the ocean have also been found by Mooers and Smith ( I 968) 
in tide-gauge records on the coast of Oregon and by Cartwright (1969) in the 
unusually sharp diurnal currents off the west coast of Scotland. 

It seemed to us desirable to test the existence of such waves on a laboratory 
scale. A demonstration of topographic waves in an annulus (Phillips 1965) was 
carried out by Ibbetson and Phillips ( 1967 ). But with continental shelf waves, 
one of the boundaries is open and the depth profile differs in other respects. In 
this note we describe some simple experiments to generate continental shelf 
waves and test their theoretical dispersion relationship. The method is similar 
to that used in a recent study of double Kelvin waves (Caldwell and Longuet-
Higgins, in press). The dispersion relationship for the shelf waves (with hori-
zontal divergence included) is well verified, as are other salient features of the 
motion. W e discuss certain physical consequences of the dispersion relationship 
and suggest how field observations might be planned so as to detect such waves 
unambiguously in the ocean. 

2. Theory. According to the linearized theory of long waves in a shallow 
homogeneous rotating sea, the equations of motion may be written: 

bu bt;, 

l --fv = -g-
bt bx' 

bv bt;, 
(2. I) 

- +ju = - g -
bt by' 

where x,y are horizontal rectangular coordinates, t is the time, u and v are 
the horizontal velocity components, t;, is the surface displacement, f is the 
Coriolis parameter, and g is the acceleration of gravity. If h denotes the undis-
turbed depth, the equation of continuity is: 

bt;, b b 
- + - (hu)+-(hv) = o. 
bt bx by (2.2) 

We consider the situation shown in Fig. I, which represents a simple con-
tinental margin. The depth h is a function of only the offshore coordinate y. 
L denotes the total width of the margin, with h, the depth at the shoreline and 
h, the depth in the open ocean beyond the slope. We consider waves of angular 
frequency a and of wave number m propagating in the x direction. 

If the divergence parameter 

/2 e=--
m2gh2 (2.3) 
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F igure I. Schemat ic diagram of a continental margin, showing the axes of x and y . h1 denotes the 
depth at the shoreline and h, the maximum depth of the ocean. ( is the surface elevation 
due to the wave. 

is sufficiently small, it may be possible to express the velocity as the curl of a 
stream-function, as was done by Buchwald and Adams (1968). Though this 
approximation may be justified in some situations, it is less justifiable in our 
laboratory model. So we shall retain the full system of eqs. ( 2. 1) and ( 2. 2 ). 

On replacing a/a t by -ia and a/ax by im, we may solve (2.1) for the velo-
city components (u, v): 

g ( dl;) u = a' - r am l; + I dy ' 

. g ( dl; fi ,.') 
I V = a' - r a dy + m C, ' l 

and then, on substituting in (2.2), we obtain the differential equation for l;: 

This equation has been discussed by Longuet-Higgins ( 1968), who considered 
solutions over the infinite range (- oo < y < oo). Here, however, we have the 
boundary condition that hu = o at the shoreline (y = o). By (2.4) this implies 
that 

dl; fm 
- = - - y when y = o. 
dy a 

Further, we have, for a trapped wave, 

C-+ o asy-+oo. 

(2.6) 

(2.7) 
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The solution of (2.5), which appropriately vanishes as y 00 , 1s: 

C ~ exp ( - Izy), 
where 

[30, I 

(2.8) 

In fact, eq. (2.8) is exact when y ? L. Hence, the boundary condition (2.7) 
may be conveniently replaced by: 

dC 
- =-I2~ 
dy 

when y = L (2. IO) 

and the eigenvalue problem is then solved over the finite interval o < y < L. 
To proceed further we must choose a particular profile for the depth, h(y). 

Then for any given value of the longshore wavenumber, m, the differential 
equation (2.5), with the boundary conditions (2.6) and (2.10), may be solved 
numerically by a standard method (see Appendix); this gives a discrete set of 
eigenfrequencies a1, a2, ...... and a corresponding set of eigenfunctions C, 
(y), Cz(y), ..... . 

If the depth profile, h(y), is monotonic, then typically the dispersion rela-
tionship (giving the frequency, a, as a function of the wavenumber) is as shown 
by the full curves in Fig. 2. All of the eigenfrequencies ai are positive, cor-
responding to waves whose phases progress with the shallower water on their 
right, in the northern hemisphere. The lowest mode (having the highest 
frequency) is a K elvin wave whose velocity, given by the ratio a/m, tends to 

0 .5 

0.4 

o;, 
0 .3 
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0 .1 

: Isl mod~ 

4 6 

ml 

-~ 

10 

Figure 2. Theoretical curves showing the dependence of the fr equency on the longshore wave-
nu_mber m - 2:n;/wavelength. The curves are calculated fo r the profil e in F ig. 4. Plotted 
points represent experimental data. 
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Figure 3. T heoretical dispersion relationship showing the effect of horizontal divergence, in a shelf 
wi th exponential profile. The divergence parameter, w, is defined by eq. (2.rr) . 

the value (gh2) 1l2 as mL o (large wavelengths) and tends to (gh,)1l2 as mL 
oo(small wavelengths). The frequency increases with the wave number, so 

that the group velocity, da/dm, has the same sign as the phase velocity, a/m. 
We shall call this the zeroth mode. The other modes behave differently. Each 
of their frequencies rises to a maximum at some positive value of mL and tends 
to zero as mL oo, provided of course that h, > o. (If a beach condition exists, 
then alf tends to a positive limit) . On the low wavenumber side of the maxi-
mum the group velocity is positive, and on the high wave number side it is 
negative. Thus, for any given value of the frequency a/J that is less than the 
maximum for a given mode, there are two possible waves: one with positive 
group velocity and one with negative group velocity. At the maximum fre-
quency, the group velocity vanishes. These waves have special properties, as 
we shall see below. 

If the horizontal divergence were neglected, as in the theory of Buchwald 
and Adams (1968), the Kelvin wave would not appear; it would tend to coin-
cidence with the a-axis. 

The effect of horizontal divergence on the other modes may be seen in 
Fig. 3, where the dispersion relationship for the fir st mode is shown for an 
exponential profile, h(y) , similar to that in our model. The divergence para-
meter, w, is defined by 

- LJ2 
w = gh'' ( 2. I I) 

where h' denotes the maximum bottom slope. The curve w = o corresponds 
to the nondivergent theory of Buchwald and Adams (1968), checked by our 
numerical integration. The other curve is calculated numerically with w = 
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Figure 4. {Top): A cross-section of the wide shelf. (Bottom): The amplitudes of u, v, and ( in 
the fir st three modes, in the typical case mL = 5.0. The Kelvin wave is not shown. 
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0.29, a typical value for our model. The frequencies given by the two curves 
differ by as much as 20 % . 

The theoretical form of the first three modes is indicated in Fig. 4, where 
the amplitudes of u, v, and C are plotted as functions of y for typical values of 
the parameters. C is always in phase with u but in quadrature with v. It can 
be shown that, in the nth mode, the surface elevation C has just n zeros. So 
also have u and v , if the shoreline is counted as a zero of v. Thus, the circula-
tion is divided into 11 cell s in the transverse direction. 

3. Experiments. A circular model basin was constructed with the axial cross 
section as shown in Fig. 5. The deep-water section beyond the shelf was of 
parabolic form, so that when the basin was rotated at a constant speed, Q/2n 
= 0.5 revs/sec, the depth of water beyond the shelf was uniform when measured 
in a direction parallel to the axis of rotation. 

The total shelf width, L, was I 6.o cm, the depths, hr and h,, were o.6 cm 
and 10.0 cm, respectively (measured parallel to the axis). A variation in the 
shelf was made by moving the simulated shoreline out through a distance L/2. 
The original shelf will be called the "wide shelf", the variation, the "narrow 
shelf". 

The motion was generated by a paddle that oscillated radially, forcing water 
across the depth contours. The paddle was driven by a d.c. motor whose speed 
could be varied; the model rotated with a constant period of 2.0 secs (counter-
clockwise). The paddle period was determined by measuring, with an electronic 
counter, the time between successive closures of a microswitch tripped by a 

t 

I 
Pl EX/GLASS Pt.EX/GLASS 

Figure 5. A cross sect ion through the axi s of the rotating model basin. The axis is at the left-hand 

edge. 
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cam on the motor shaft. The rotation period of the model was measured sim-
ilarly. The width of the paddle was varied according to the wavelength of the 
expected motion; it was usually between 1/4 and 1/8 of a wavelength. 

W e found that the waves were best observed by streak photographs. Alu-
minum powder was distributed over the water surface and sequences of I 6-mm 
photographs were taken with exposures varying from 0.5 sec to 5 sec (depend-
ing on the wave period) and a delay of a few tenths of a second between ex-
posures. T he wavelengths were measured directly from the projected frames 
at the radius of the wave "centers" (see below); the phase speeds were measured 
by noting the moti on of the waves between successive frames. From the phase 
speed and frequency, independent estimates of the wavelength were computed. 
In cases where the wavelength was too long for an entire wave to be seen in 
one picture, these were the only estimates. 

Some photographs are shown in Figs. 6 to 8. Fig. 6 shows short waves pro-
pagating to the left of the paddle, which is located just to the right of the 
photograph. Fig. 7 shows long waves on the other side of the paddle, which 
can be seen at the left of this picture. 

In order to generate higher modes, two parallel paddles were used; these 
moved like scissor blades. The resulting motion of the water is shown in Fig. 8. 
Measurements of the wave forms (described below) show this to be the third 
mode. 

In Fig. 2 are shown the experimentally determined values of the dimension-
less wavenumber, mL, plotted against the ratio of the angular frequency of 
the wave to the Coriolis parameter, a/f. We have taken f = 2 Q. All of the data 
in Fig. 3 correspond to the "wide" shelf. The first and third modes ( dots and 
triangles) could be definitely identified as such from the photographs. The data 
represented by the open circles, which could not be definitely identified, appear 
to be second-mode waves. 

Fig. 9 compares the fir st mode frequencies for the wide shelf (upper curve) 
and for the narrow shelf (lower curve). 

The accuracy of the measurements is probably represented fairly well by the 
scatter of the experimental points. An individual measurement of wavelength 
could be made with an accuracy of perhaps 2 %, but measurements varied from 
frame to frame by 5-10%. 

W e also measured the distances from the shoreline to the "centers" of the 
waves-that is, to the points that appeared to be motionless in the streak 
p_hotograp~s- and we compared them with the distances indicated by the 
e1genfunct1ons, such as those shown in Fig. 4. The results are given in Table I, 
where a good measure of agreement is shown. 

4· _Discus:ion .. Figs. 2 and 9 show that the agreement between theory and 
experiment 1s fairl y good, though the observations tend to be somewhat above 
the theoreti cal curves. Some of the possible sources of error are similar to those 
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Figure 6. A streak photograph showing short waves propagating "eastward" at a fr equency a/J = 0.30. 
The paddle, 4 cm wide and wi th a 7 cm stroke, is at the top of the picture. The outer 
edge of the basin is at the left. Exposure: o.6 sec; paddle period: 3.33 sec. 
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Figure 7. Long waves propagat ing "westward" a t u/f = o. 37. The paddle ( , o cm wide) is at the bottom 
Exposure: 0.7 sec; paddle period 2.70 sec. The solid lines are radii . The broken lin e marks 
the foot of the slope. 
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Figure 8. Higher modes generated by a double paddle ( 10 cm wide, scissors act ion) which is visible 
at the bottom. Exposure 0.9 sec; period 7. 1 sec. 
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Figure 9 . Di spcr ion cu rves, rela ting frequency a and longshore wa ve number m, fo r shelves of two 
different wid ths. The upper curve corresponds to the " wide shelf" (L = 16.o cm) and the 
lower cu rve to the "narrow shelf " (L = 8.o cm). T he plotted poin ts represen t experimental 
data. 

previously considered in a study of double K elvin waves by Caldwell and 
L onguet-Hi ggins (in press). 

(i) T he curvature of the contours in a plane perpendicular to the axis was 
considered by olving the appropriate equati on, simil ar to (2.6), in radial co-
ordinates. For a given wavenumber, the frequency was found to be reduced 
by not more than 3 %, and this effect was con tined to the longer waves (small er 
wavenumbers). 

(ii ) The effect of the outer boundary was considered by replacing eq. (2.7) 
with the condition that the radial velocit y vanish at the boundary. This again 
reduced the theoreti cal frequency by an amount of the same order of magnitude. 

(iii ) The effect of the curvature of the free surface in an axial plane is 
harder to assess, but it is probably of the same order as ( 1 -cos 0), where 0 is the 

Table I. 
r--- Experimental ---, T heoreti cal 

' Di stance D istance 
Mode mL off to gyre to nod e in mL a/f 

center * wave fu nction• 

1.2 0.30 0.81 0.78 1.6 0.30 
1.5 0.36 0.69 0.75 2. I 0.36 
2.0 0.41 0.85 0.68 3.0 0.4 
6.5 0.36 0.72 0.54 5.7 0.37 
3.5 0.42 o. 75 0.68 3.0 0.4 

j 0.18 

} 
0.18 

3 2.8 0.14 0.60 0.51 4.0 0.13 I 0.97 0.91 
• Distances are scaled by shelf width. 



Caldwell et al.: Some Model Expe,-iments 51 

angle between the axis of rotation and the normal to the free surface near the 
center of the shelf (where the energy density of the moti on is greatest). In 
these experiments, 0 is about 30%, so we would expect discrepancies of the 
order of l 5 % between theory and experiment. That these discrepancies are not 
seen suggests that some of the errors mutually cancel. 

(iv) The effect of viscosity is mainly fel t in boundary layers of thickness a~ 
(2v//) 112 on the sides and bottom. T ypically, a is of the order of 0.05 cm. 
Since this is small compared with the mean depth, h (of the order of 1 % or 
less), the main effect on the moti on is to introduce damping due to viscous 
dissipation of energy in the boundary layers. Caldwell and Longuet-Higgins 
(in press) have shown that the e-folding distance for the wave amplitude is of 
the order of 

wavelengths, 

where c and cg denote the phase velocity, a/k, and the group velocity, da/dk, 
respectively. This is comparable to the rate of decay seen in the experiments. 

In spite of the possible errors listed above, it may be said that the main 
features of continental shelf waves have been well verified in the laboratory. 
In particular there is a clear indication of a maximum frequency, for each 
mode, implyi ng a vanishing group velocity. Waves of this frequency and wave-
number should tend to "gang around" their point of origin, since their energy 
is propagated with zero velocity. Hence, oscillations of this frequency should 
be characteristic of the bottom topography of each particular coastline. 

5. Oceanic Observations of Shelf Waves. Present indications of shelf waves 
in the ocean (Hamon 1962, 1963, 1966, Mooers and Smith 1968, Cart-
wright 1969, Cutchin 1972) are both scanty and indirect. In view of the 
possibly common occurrence of these waves, it is worthwhile to discuss how 
best to plan a field investigation designed especially to detect them. 

Shelf waves seem most likel y to become evident in current records, and, 
to a lesser extent, in records of surface elevation or bottom pressure. To 
eliminate baroclinic motions, it is generally necessary to measure current 
velocities at several different depths in any one vertical line and to take the 
mean current. 

Suppose first that we have records of u, v, and 1; at a single location. W e 
denote these functions of the time by F,(t), F2(t), and FJ(t) . From such records 
we may compute the three frequency spectra Et(a) (i = 1,2,3) and the co-
spectra and quadrature spectra Ct1(a) and Qt1(a), where Ctt == Et. Hence, at 
each frequency, a, we can calculate the relative phase and amplitude of u, v, 
and 1; as well as the mutual coherency. 

If there is only one mode at a particular frequency, then the coherency will 
be high, and the coherent parts of u and 1; will be in phase (Q13(( C,3); the 
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coherent parts of v and C will be in quadrature (Q23 « C23)- Moreover, 
the relative amplitudes of all the Ct1 and Qii will be predictable. In this 
very simple circumstance we should have a strong indication of a single shelf 
wave. 

But from the dispersion relationship (Fig. 3, for example) we know that 
there may be two waves of M ode r, two of Mode 2, and so on, up to a finit e 
number. If this were the case, we would still have Q,3«C,3, and Q23))C23, 
but the relative amplitudes of the other Ct1 would not be the same as in any 
one of the modes. 

In some cases we may make a slightly stronger statement. Suppose for in-
stance that there are two waves present, with theoretical cospectra ( c;1 + iQ~1) 

and ( c;; + iQ;1). Then the cospectrum of the combined signal will be of the 
form: 

where}. and µ are constants independent of i, 1. Geometrically, if we take 9 = 
(Cn, C22, C33, C23, Q,2, Q23) as homogeneous coordinates in a five-dimen-
sional space, then 9 li es on the straight line joining 9' and (:" . Similarly, if 
three modes were present, 9 would li e in the plane determined by 9', 9", 
and 9'"; and so on. Such a method is capable, in theory, of determining the 
relative amplitudes of fiv e independent modes at a given frequency, provided 
these are the only motions present, from records taken at a single station. But 
the presence of noise wi ll, in practice, probably confine the usefulness of the 
method to the case when one or two modes are dominant. 

In practice it is very desirable to have more than one current-meter station. 
A particularly strong confirmation would be obtained from data taken at two 
or more stations in a line at ri ght angles to the bottom contours. The relative 
amplitudes of the modes at the different stations should, of course, be the same. 
A plot of the observed amplitude of each mode as a function of distance offshore 
could be compared directly with the theory. 

To verify the dispersion relati onship in detail, it is necessary to have 
measurements at different stations in a line parallel to the coast. If one mode is 
dominant, then the phase velocity can be determined from the relative phase 
at any two stations. More ambi tiously, we might hope to determine the (a,m) 
spectrum, as was done by Munk, et al. (1964) for edge-waves (of much higher 
frequency) off the coast of California. 

A distinguishing feature of the particular low-frequency waves under dis-
cussion is the maximum fr equency for each mode. In the neighborhood of such 
a maximum, there is a large spread of wavenumber corresponding to only a 
very small change in frequency. This makes it more diffi cult to determine the 
wavenumber of any particular mode, but there is a compensating advantage: 
if the spectrum of wavenumbers is continous, as it may be on a unifo rm straight 
coastlin e, then the frequency spectrum Et(a) at any given station should show 
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a peak at the ma.,ximum modal frequencies. Indeed, one of the firs t and simplest 
tests for the presence of shelf waves is whether the theoreti cal maximum fre-
quencies appear as maxima in the frequency spectra . 
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APPENDIX 

To prepare eq. (2.5) for solution over the interval o <y < L, we set 

C = P(y), h ~; = Q(y) (Ar) 

in the left half of the interval (o <y < L/2) and 

C = R(y), (A2) 

in the right half ( L/2 < y < L). Then, in the left half, P and Q satisfy the two 
linear equations: 

dP =Q 
dy 

dQ = (f2 - a2 + m' h - fm dh) p 
dy g a dy l (A3) 

with similar equations for R, S in the right half. Choosing some value of a, 
we now integrate P and Q step-by-step from the left, starting with the initial 
conditions 

p = .A, Q = _ fmh ·.A 
(1 

when y = o, 

where .A is some convenient constant (say unity). This makes v = o when 
y = o. At the same time, we integrate R and S from the right, starting with 
the values 

R = B, S = - (l2/h2) B when y = L, (A5) 

where l2 is given by (2.9). In each case the integration is carried as far as the 
midpoint y = L/2. If Pr, Qr, Rr, Sr denote the values of P, Q, R, S, at the 
midpoint, we now calculate the Wronskian 

W=PrSr-QrRr, (A6) 
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which is a function of the initial frequency a. If a were an eigenvalue, then, 
since both C and dC/dy must be continuous at y = L/2, the ratios P,/Q, and 
R,/S, would be equal, making W vanish. Conversely, when W vanishes we 
can find .A and B so that C satisfies all the necessary conditions and so that C 
and dC/dy are continuous at y = L/2. Hence, the eigenfrequencies are given 
by the zeros of W(a). By repeating the calculation of W for different values 
of a, we obtain fV as a function of a. The zeros of W are then obtained by 
interpolation and by successive approximation, as in Newton's methods giving 
both the <Jr and the corresponding eigenfunctions, C, (y). 


