190 research outputs found
Use of Quadrupolar Nuclei for Quantum Information processing by Nuclear Magnetic Resonance: Implementation of a Quantum Algorithm
Physical implementation of Quantum Information Processing (QIP) by
liquid-state Nuclear Magnetic Resonance (NMR), using weakly coupled spin-1/2
nuclei of a molecule, is well established. Nuclei with spin1/2 oriented in
liquid crystalline matrices is another possibility. Such systems have multiple
qubits per nuclei and large quadrupolar couplings resulting in well separated
lines in the spectrum. So far, creation of pseudopure states and logic gates
have been demonstrated in such systems using transition selective
radio-frequency pulses. In this paper we report two novel developments. First,
we implement a quantum algorithm which needs coherent superposition of states.
Second, we use evolution under quadrupolar coupling to implement multi qubit
gates. We implement Deutsch-Jozsa algorithm on a spin-3/2 (2 qubit) system. The
controlled-not operation needed to implement this algorithm has been
implemented here by evolution under the quadrupolar Hamiltonian. This method
has been implemented for the first time in quadrupolar systems. Since the
quadrupolar coupling is several orders of magnitude greater than the coupling
in weakly coupled spin-1/2 nuclei, the gate time decreases, increasing the
clock speed of the quantum computer.Comment: 16 pages, 3 figure
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Structure and properties of ilmenite from first principles
Published versio
First-principles calculations of the phase stability of TiO2
Published versio
Investigation of the Interaction of Water with the Calcite (10.4) Surface Using Ab Initio Simulation
- …