45 research outputs found

    402 “MOBILITY” FOOTWEAR REDUCES DYNAMIC LOADS IN SUBJECTS WITH OSTEOARTHRITIS OF THE KNEE

    Get PDF

    End-to-end efficiency quantification of an autonomous underwater vehicle propulsion system

    Get PDF
    Increasing demand for versatile and long-endurance autonomous underwater vehicles puts significant design pressure on all aspects of AUV design and operation, including that of the propulsive system. The present study discusses testing of a thruster unit and several propellers developed to propel a hybrid glider/flight-style underwater vehicle. Due to the AUV being required to operate at largely different speeds and thrust levels between the two configurations, the propulsive subsystem needs to be capable of remaining efficient and effective across a wide range of operating conditions. Thus, the current results focus on quantifying all of the factors affecting the drive train, ranging from open-water performance of the propeller up to electro-mechanical efficiency of the magnetic coupling and geared electric motor. It is shown that, depending on the required operating point, total efficiency of the vehicle is primarily affected by non-linear low Reynolds number effects, sudden drop of gearbox efficiency at low revolutions and applied torques, as well as blade deformation, aside of the baseline propeller efficiency

    Relationship between knee and ankle degeneration in a population of organ donors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a progressive degenerative condition of synovial joints in response to both internal and external factors. The relationship of OA in one joint of an extremity to another joint within the same extremity, or between extremities, has been a topic of interest in reference to the etiology and/or progression of the disease.</p> <p>Methods</p> <p>The prevalence of articular cartilage lesions and osteophytes, characteristic of OA, was evaluated through visual inspection and grading in 1060 adult knee/tali pairs from 545 cadaveric joint donors.</p> <p>Results</p> <p>Joint degeneration increased more rapidly with age for the knee joint, and significantly more knee joints displayed more severe degeneration than ankle joints from as early as the third decade. Women displayed more severe knee degeneration than did men. Severe ankle degeneration did not exist in the absence of severe knee degeneration. The effect of weight on joint degeneration was joint-specific whereby weight had a significantly greater effect on the knee. Ankle grades increasingly did not match within a donor as the grade of degeneration in either the left or the right knee increased.</p> <p>Conclusions</p> <p>Gender and body type have a greater effect on knee joint integrity as compared to the ankle, suggesting that knees are more prone to internal causative effects of degeneration. We hypothesize that the greater variability in joint health between joints within an individual as disease progresses from normal to early signs of degeneration may be a result of mismatched limb kinetics, which in turn might lead to joint disease progression.</p

    Outlook on marine propeller noise and cavitation modelling

    No full text
    Two computational studies are presented in this paper. First, the Potsdam Propeller Test Case which is used to demonstrate the capabilities of mass transfer cavitation models, more precisely the model by Sauer and Schnerr, in tackling the problem of marine propeller cavitation. It is shown that the extents of the predicted cavitation regions agree well with the experiment but suffer from the fact that the tip vortices and the associated low pressure regions are under resolved when URANS is utilised. Next, preliminary results from the study of cavitation noise modelling attempt are presented for a NACA 0009 section, used as a simplified representation of a propeller blade. Large Eddy Simulation and Ffowcs Williams-Hawkings porous acoustic analogy are used in order to estimate the cavitation-induced noise. Results indicate that the discussed approach provides the means for identifying low-frequency noise generation mechanisms in the flow, yielding sound pressure levels of the order of 40 dB re 20 mPa, but does not allow for finescale bubble dynamics to be resolved. One may conclude that the discussed approach is a viable option to predict large parts of marine propeller noise spectra but further work is needed in order to account for the high frequency components

    Impact of high-risk conjunctions on Active Debris Removal target selection

    Get PDF
    All rights reserved.Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested

    Impact of high-risk conjunctions on Active Debris Removal target selection

    No full text
    All rights reserved.Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested

    A deterministic approach to active debris removal target selection

    No full text
    Many decisions, with widespread economic, political and legal consequences, are being considered based on the concerns about the sustainability of spaceflight and space debris simulations that show that Active Debris Removal (ADR) may be necessary. The debris environment predictions are affected by many sources of error, including low-accuracy ephemerides and propagators. This, together with the inherent unpredictability of e.g. solar activity or debris attitude, raises doubts about the ADR target-lists that are produced. Target selection is considered highly important, as removal of non-relevant objects will unnecessarily increase the overall mission cost [1]. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object [2]. To this end, a conjunction detection algorithm, based on the “smart sieve” method, has been developed and utilised with an example snapshot of the public two-line element catalogue. Another algorithm was then applied to the identified conjunctions to estimate the maximum and true probabilities of collisions taking place. Two target-lists were produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities were computed using the maximum probability approach, which is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the purpose of ADR are drawn and a deterministic method for ADR target selection, which could reduce the number of ADR missions to be performed, is propose

    Simulating turbulent transition using Large Eddy Simulation with application to underwater vehicle hydrodynamic modelling

    No full text
    Large Eddy Simulation (LES) has been widely used by the aerospace community in order to model laminar separation bubbles and other low Reynolds number phenomena. In maritime-related applications this family of turbulence modelling techniques has typically been used to model unsteady cavitation. Present work aims to apply it to develop first-hand experience with modelling laminar separation bubbles using LES in OpenFOAM, specifically looking at the effects of the choice of the subgrid model. The investigation is carried out on the SD7003 2D foil section, for which PIV flow field measurements, as well as reference CFD results, are available. Four different popular LES models are tested: Smagorinsky, dynamic kk-equation, wall-adaptive (WALE), and implicit (ILES). The ultimate goal of this work is to apply the established methodology to model flows on underwater vehicle appendages, as well as propellers, which have been reported to experience noticeable amounts of laminar flow when operating at model-scale Reynolds numbers. These flows experience complex, unsteady hydrodynamic phenomena, such as tip and root vortices, laminar separation bubbles, and are affected by onset turbulence. Thus, studying them with LES could lead to improved predictions compared to the previous work by the authors which relied on using RANS transition models to simulate the flow past underwater vehicle geometries
    corecore