245 research outputs found

    Recent observations on cavitation and cavitation noise

    Get PDF
    This paper is primarily concerned with the acoustics of traveling bubble cavitation around foils or headforms. We begin with observations of individual bubbles and the acoustic signals they emit, our purpose being to identify areas of research which would enhance our understanding of the history of individual bubbles. Then we present some numerical integrations of the Rayleigh/Plesset equation for the same flows. The comparison is encouraging in terms of future synthesis of the noise by analytical means. Finally, bubble interaction effects which were omitted earlier are discussed and some recent analytical results including these effects are presented

    Observations of the Dynamics and Acoustics of Attached Cavities

    Get PDF
    In this study of attached cavities on an axisymmetric headform, measurements were made of the noise generated by the cavitation. In addition to hydrophone recordings, a new technique employing flush mounted electrodes was used to measure the steady state and dynamic volume fluctuations of the attached cavities. The spectra of the noise are quite featureless and show some decrease in the high frequency content as the cavities become larger. However, the spectra from the electrode measurement show some distinct frequencies of fluctuation

    Cavitation Scaling Experiments With Headforms: Bubble Acoustics

    Get PDF
    Recently Ceccio and Brennen [1][2][3] have examined the interaction between individual traveling cavitation bubbles and the structure of the boundary layer and flow field in which the bubble is growing and collapsing. They were able to show that individual bubbles are often fissioned by the fluid shear and that this process can significantly effect the acoustic signal produced by the collapse. Furthermore they were able to demonstrate a relationship between the number of cavitation events and the nuclei number distribution measured by holographic methods in the upstream flow. Kumar and Brennen [4][5] have further examined the statistical properties of the acoustical signals from individual cavitation bubbles on two different headforms in order to learn more about the bubble/flow interactions. All of these experiments were, however, conducted in the same facility with the same size of headform (5.08cm in diameter) and over a fairly narrow range of flow velocities (around 9m/s). Clearly this raises the issue of how the phenomena identified change with speed, scale and facility. The present paper will describe further results from experiments conducted in order to try to answer some of these important questions regarding the scaling of the cavitation phenomena. These experiments (see also Kuhn de Chizelle et al. [6][7]) were conducted in the Large Cavitation Channel of the David Taylor Research Center in Memphis Tennessee, on similar Schiebe headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15m/s and for a range of cavitation numbers

    Observations and scaling of travelling bubble cavitation

    Get PDF
    Recent observations of growing and collapsing bubbles in flows over axisymmetric headforms have revealed the complexity of the ‘micro-fluid-mechanics’ associated with these bubbles (van der Meulen & van Renesse 1989; Briancon-Marjollet et al. 1990; Ceccio & Brennen 1991). Among the complex features observed were the bubble-to-bubble and bubble-to-boundary-layer interactions which leads to the shearing of the underside of the bubble and alters the collapsing process. All of these previous tests, though, were performed on small headform sizes. The focus of this research is to analyse the scaling effects of these phenomena due to variations in model size, Reynolds number and cavitation number. For this purpose, cavitating flows over Schiebe headforms of different sizes (5.08, 25.4 and 50.8 cm in diameter) were studied in the David Taylor Large Cavitation Channel (LCC). The bubble dynamics captured using high-speed film and electrode sensors are presented along with the noise signals generated during the collapse of the cavities. In the light of the complexity of the dynamics of the travelling bubbles and the important bubble/bubble interactions, it is clear that the spherical Rayleigh-Plesset analysis cannot reproduce many of the phenomena observed. For this purpose an unsteady numerical code was developed which uses travelling sources to model the interactions between the bubble (or bubbles) and the pressure gradients in the irrotational flow outside the boundary layer on the headform. The paper compares the results of this numerical code with the present experimental results and demonstrates good qualitative agreement between the two

    Incepting cavitation acoustic emissions due to vortex stretching

    Full text link
    The acoustic signature of the vortex cavitation bubbles can be characterized during inception, growth, and collapse. Growing and collapsing bubbles produced a sharp, broadband, popping sound. However, some elongated cavitation bubbles produce a short tone burst, or chirp, with frequencies on the order of 1 to 6 kHz. The frequency content of the acoustic signal during bubble inception and growth were related to the volumetric oscillations of the bubble and vortex dynamics coupling. A relationship was also found between the frequency of the oscillations and the flow and water quality conditions.http://deepblue.lib.umich.edu/bitstream/2027.42/84225/1/CAV2009-final183.pd

    Shakespeare in the Spring

    Get PDF

    Dynamics of Attached Cavities on Bodies of Revolution

    Get PDF
    Attached cavitation was generated on two axisymmetric bodies, a Schiebe body and a modified ellipsoidal body (the I.T.T.C. body), both with a 50.8 mm diameter. Tests were conducted for a range of cavitation numbers and for Reynolds numbers in the range of Re = 4.4x10⁵ and 4.8x10⁵. Partially stable cavities were observed. The steady and dynamic volume fluctuations of the cavities were recorded through measurements of the local fluid impedance near the cavitating surface [us]ing a series of flush mounted electrodes. These data were combined with photographic observations. On the Schiebe body, the cavitation was observed to form a series of incipient spot cavities which developed into a single cavity as the cavitation number was lowered. The incipient cavities were observed to fluctuate at distinct frequencies. Cavities on the I.T.T.C. started as a single patch on the upper surface of the body which grew to envelope the entire circumference of the body as the cavitation number was lowered. These cavitites also fluctuated at distinct frequencies associated with oscillations of the cavity closure region. The cavities fluctuated with Strouhal numbers (based on the mean cavity thickness) in the range of St = 0.002 to 0.02, which are approximately one tenth the value of Strouhal numbers associated with Karman vortex shredding. The fluctuation of these stabilized partial cavities may be related to periodic break off and filling in the cavity closure region and to periodic entrainment of the cavity vapor. Cavities on both headforms exhibited surface striations in the streamwise direction near the point of cavity formation, and a frothy mixture of vapor and liquid was detected under the turbulent cavity surface. As the cavities became fully developed, the signal generated by the froth mixture increased in magnitude with frequencies in the range of 0 to 50 Hz

    Cavitation scaling experiments with headforms : bubble dynamics

    Get PDF
    Utilizing some novel instrumentation which allowed detection and location of individual cavitation bubbles in flows around headforms. Ceccio and Brennen (1991 and 1989) recently examined the interaction between individual bubbles and the structure of the boundary layer and flow field in which the bubble is growing and collapsing. They were able to show that individual bubbles are often fissioned by the fluid shear and that this process can significantly effect the acoustic signal produced by the collapse. Furthermore they were able to demonstrate a relationship between the number of cavitation events and the nuclei number distribution measured by holographic methods in the upstream flow. More recently Kumar and Brenncn (1991-1992) have closely examined further statistical properties of the acoustical signals from individual cavitation bubbles on two different headformsm in order to learn more about the bubble/flow interactions. However the above experiments were all conducted in the same facility with the same size of headform (5.08cm in diameter) and over a fairly narrow range of flow velocities (around 9m/s). Clearly this raises the issue of how the phenomena identified in those earlier experiments change with changes of speed, scale and facility. The present paper will describe experiments conducted in order to try to answer some of these important qucstions regarding the scaling of the cavitation phenomena. We present data from experiments conducted in the Large Cavitation Channel of the David Taylor Research Center in Memphis, Tennessee, on similar headforms which are 5.08, 25.4 and 50.8cm in diameter for speeds ranging up to 15m/s and for a range of cavitation numbers. In this paper we focus on visual observations of the cavitation patterns and changes in these patterns with speed and headform size
    corecore