119 research outputs found

    Mapping the Interactions between a RUN Domain from DENND5/Rab6IP1 and Sorting Nexin 1

    Get PDF
    Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5 via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface plasmon resonance analyses

    Thousands of Rab GTPases for the Cell Biologist

    Get PDF
    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform comparative analysis in cell biology

    Reply

    No full text

    The behaviour of overweight dogs shows similarity with personality traits of overweight humans

    Get PDF
    Excessive food intake and the resulting excess weight gain is a growing problem in human and canine populations. Dogs, due to their shared living environment with humans, may provide a beneficial model to study the causes and consequences of obesity. Here, we make use of two well-established research paradigms (two-way choice paradigm and cognitive bias test), previously applied with dogs, to investigate the role of obesity and obesity-prone breeds for food responsiveness. We found no evidence of breed differences in food responsiveness due to one breed being more prone to obesity than another. Breed differences found in this study, however, can be explained by working dog status, i.e. whether the dog works in cooperation with, or independently from, humans. Our results also confirm that overweight dogs, as opposed to normal weight dogs, tried to maximize food intake from the higher quality food and hesitated to do the task when the food reward was uncertain. These results are very similar to those expected from the parallel models that exist between certain personality traits and being overweight in humans, suggesting that dogs are indeed a promising model for experimentally investigating obesity in humans
    corecore