5,782 research outputs found

    Robust Inference for Univariate Proportional Hazards Frailty Regression Models

    Full text link
    We consider a class of semiparametric regression models which are one-parameter extensions of the Cox [J. Roy. Statist. Soc. Ser. B 34 (1972) 187-220] model for right-censored univariate failure times. These models assume that the hazard given the covariates and a random frailty unique to each individual has the proportional hazards form multiplied by the frailty. The frailty is assumed to have mean 1 within a known one-parameter family of distributions. Inference is based on a nonparametric likelihood. The behavior of the likelihood maximizer is studied under general conditions where the fitted model may be misspecified. The joint estimator of the regression and frailty parameters as well as the baseline hazard is shown to be uniformly consistent for the pseudo-value maximizing the asymptotic limit of the likelihood. Appropriately standardized, the estimator converges weakly to a Gaussian process. When the model is correctly specified, the procedure is semiparametric efficient, achieving the semiparametric information bound for all parameter components. It is also proved that the bootstrap gives valid inferences for all parameters, even under misspecification. We demonstrate analytically the importance of the robust inference in several examples. In a randomized clinical trial, a valid test of the treatment effect is possible when other prognostic factors and the frailty distribution are both misspecified. Under certain conditions on the covariates, the ratios of the regression parameters are still identifiable. The practical utility of the procedure is illustrated on a non-Hodgkin's lymphoma dataset.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000053

    Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems

    Get PDF
    The limits of flexural wave absorption by open lossy resonators are analytically and numerically reported in this work for both the reflection and transmission problems. An experimental validation for the reflection problem is presented. The reflection and transmission of flexural waves in 1D resonant thin beams are analyzed by means of the transfer matrix method. The hypotheses, on which the analytical model relies, are validated by experimental results. The open lossy resonator, consisting of a finite length beam thinner than the main beam, presents both energy leakage due to the aperture of the resonators to the main beam and inherent losses due to the viscoelastic damping. Wave absorption is found to be limited by the balance between the energy leakage and the inherent losses of the open lossy resonator. The perfect compensation of these two elements is known as the critical coupling condition and can be easily tuned by the geometry of the resonator. On the one hand, the scattering in the reflection problem is represented by the reflection coefficient. A single symmetry of the resonance is used to obtain the critical coupling condition. Therefore the perfect absorption can be obtained in this case. On the other hand, the transmission problem is represented by two eigenvalues of the scattering matrix, representing the symmetric and anti-symmetric parts of the full scattering problem. In the geometry analyzed in this work, only one kind of symmetry can be critically coupled, and therefore, the maximal absorption in the transmission problem is limited to 0.5. The results shown in this work pave the way to the design of resonators for efficient flexural wave absorption

    Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Full text link
    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress whereas for intermediate shear rates, it becomes a periodic function of time. A possible mechanism for such kind of oscillations is discussed

    Generating Optimal Control Simulations of Musculoskeletal Movement using OpenSim and MATLAB

    Get PDF
    Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility

    Monte Carlo Tree Search in Finding Feasible Solutions for Course Timetabling Problem

    Get PDF
    We are addressing the course timetabling problem in this work. In a university, students can select their favorite courses each semester. Thus, the general requirement is to allow them to attend lectures without clashing with other lectures. A feasible solution is a solution where this and other conditions are satisfied. Constructing reasonable solutions for course timetabling problem is a hard task. Most of the existing methods failed to generate reasonable solutions for all cases. This is since the problem is heavily constrained and an effective method is required to explore and exploit the search space. We utilize Monte Carlo Tree Search (MCTS) in finding feasible solutions for the first time. In MCTS, we build a tree incrementally in an asymmetric manner by sampling the decision space. It is traversed in the best-first manner. We propose several enhancements to MCTS like simulation and tree pruning based on a heuristic. The performance of MCTS is compared with the methods based on graph coloring heuristics and Tabu search. We test the solution methodologies on the three most studied publicly available datasets. Overall, MCTS performs better than the method based on graph coloring heuristic; however, it is inferior compared to the Tabu based method. Experimental results are discussed

    Risks associated with endotoxins in feed additives produced by fermentation

    Get PDF
    Acknowledgements We thank Jordi Tarrés Call, who recorded the discussions and offered advice about procedures, and Nicole Reisinger and Gerd Schatzmayr, who provided valuable information about endotoxins in animal feeds. The Rowett Institute of Nutrition and Health is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.Peer reviewedPublisher PD

    Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser

    Get PDF
    In this paper we report on a laser range finding system built using the self-mixing effect in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The distance to the target in these range finders is usually calculated by determining the time interval between the peaks in the resulting power fluctuations that are produced by the self-mixing effect. In this study we propose the use of a method that utilises the Fast Fourier Transform (FFT) that proves to have better performance than the traditional peak spacing methods used by other researchers. A range finding system has been built using a VCSEL and the FFT to measure a range of distances from 20cm to 1m with a maximum error of 1.5% and a resolution of 5mm. This is the first time to our knowledge that such a range finding system has been built with a VCSEL

    Silicon isotopes in Antarctic sponges : an interlaboratory comparison

    Get PDF
    Cycling of deepwater silicon (Si) within the Southern Ocean, and its transport into other ocean basins, may be an important player in the uptake of atmospheric carbon, and global climate. Recent work has shown that the Si isotope (denoted by δ29Si or δ30Si) composition of deep sea sponges reflects the availability of dissolved Si during growth, and is a potential proxy for past deep and intermediate water silicic acid concentrations. As with any geochemical tool, it is essential to ensure analytical precision and accuracy, and consistency between methodologies and laboratories. Analytical bias may exist between laboratories, and sponge material may have matrix effects leading to offsets between samples and standards. Here, we report an interlaboratory evaluation of Si isotopes in Antarctic and sub-Antarctic sponges. We review independent methods for measuring Si isotopes in sponge spicules. Our results show that separate subsamples of non-homogenized sponges measured by three methods yield isotopic values within analytical error for over 80% of specimens. The relationship between δ29Si and δ30Si in sponges is consistent with kinetic fractionation during biomineralization. Sponge Si isotope analyses show potential as palaeoceaongraphic archives, and we suggest Southern Ocean sponge material would form a useful additional reference standard for future spicule analyses

    Elastic instability in stratified core annular flow

    Full text link
    We study experimentally the interfacial instability between a layer of dilute polymer solution and water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition between these flow regimes is purely elastic -- it is caused by viscoelasticity of the polymer solution only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively the flow diagram. Surprisingly, unstable flows are observed for strong velocities, whereas convected flows are observed for low velocities. We demonstrate that this instability can be used to measure rheological properties of dilute polymer solutions that are difficult to assess otherwise.Comment: 4 pages, 4 figure
    corecore