
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Kinesiology Department Faculty Publication Series Kinesiology

2016

Generating Optimal Control Simulations of
Musculoskeletal Movement using OpenSim and
MATLAB
Leng-Feng Lee
University of Massachusetts Amherst

Brian R. Umberger
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/kinesiology_faculty_pubs

Part of the Anatomy Commons, and the Biomedical Engineering and Bioengineering Commons

This Article is brought to you for free and open access by the Kinesiology at ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Kinesiology Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Lee, Leng-Feng and Umberger, Brian R., "Generating Optimal Control Simulations of Musculoskeletal Movement using OpenSim and
MATLAB" (2016). PeerJ. 570.
https://doi.org/10.7717/peerj.1638

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/77513844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/kinesiology_faculty_pubs?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/kinesiology?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/kinesiology_faculty_pubs?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/903?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=scholarworks.umass.edu%2Fkinesiology_faculty_pubs%2F570&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7717/peerj.1638
mailto:scholarworks@library.umass.edu

Generating optimal control simulations of
musculoskeletal movement using
OpenSim and MATLAB

Leng-Feng Lee and Brian R. Umberger

Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, United States

ABSTRACT
Computer modeling, simulation and optimization are powerful tools that have seen

increased use in biomechanics research. Dynamic optimizations can be categorized as

either data-tracking or predictive problems. The data-tracking approach has been

used extensively to address human movement problems of clinical relevance. The

predictive approach also holds great promise, but has seen limited use in clinical

applications. Enhanced software tools would facilitate the application of predictive

musculoskeletal simulations to clinically-relevant research. The open-source software

OpenSim provides tools for generating tracking simulations but not predictive

simulations. However, OpenSim includes an extensive application programming

interface that permits extending its capabilities with scripting languages such as

MATLAB. In the work presented here, we combine the computational tools provided

by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a

framework for generating predictive simulations ofmusculoskeletal movement based

on direct collocation optimal control techniques. Inmany cases, the direct collocation

approach can be used to solve optimal control problems considerably faster than

traditional shooting methods. Cyclical and discrete movement problems were solved

using a simple 1 degree of freedommusculoskeletal model and a model of the human

lower limb, respectively. The problems could be solved in reasonable amounts of time

(several seconds to 1–2 hours) using the open-source IPOPT solver. The problems

could also be solved using the fmincon solver that is included with MATLAB, but the

computation times were excessively long for all but the smallest of problems. The

performance advantage for IPOPTwas derived primarily by exploiting sparsity in the

constraints Jacobian. The framework presented here provides a powerful and flexible

approach for generating optimal control simulations of musculoskeletal movement

using OpenSim and MATLAB. This should allow researchers to more readily use

predictive simulation as a tool to address clinical conditions that limit human

mobility.

Subjects Bioengineering, Anatomy and physiology, Kinesiology

Keywords Predictive simulation, Dynamics, Musculoskeletal model, Optimization

INTRODUCTION
Dynamic models of the musculoskeletal system are powerful tools for studying the

biomechanics of human movement. Musculoskeletal models are commonly used in

conjunction with numerical optimization techniques to solve data-tracking or predictive

How to cite this article Lee and Umberger (2016), Generating optimal control simulations of musculoskeletal movement using OpenSim

and MATLAB. PeerJ 4:e1638; DOI 10.7717/peerj.1638

Submitted 3 November 2015
Accepted 7 January 2016
Published 26 January 2016

Corresponding author
Brian R. Umberger,

umberger@umass.edu

Academic editor
Jiajie Diao

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.1638

Copyright
2016 Lee & Umberger

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.1638
mailto:umberger@�umass.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.1638
http://www.creativecommons.org/licenses/by/3.0/
http://www.creativecommons.org/licenses/by/3.0/
https://peerj.com/

human movement problems (Pandy, 2001; Umberger & Caldwell, 2014). In the tracking

case, the objective is to minimize the difference between the behavior of the model and a

target set of experimental data, such as joint kinematics and ground reaction forces

(GRFs). In the predictive case, the objective is to perform the task while minimizing or

maximizing a performance criterion, such as minimizing energy consumption or

maximizing speed. The data-tracking approach has increasingly been used to address

clinically-relevant human movement problems (e.g., Fey, Klute & Neptune, 2012;

Goldberg, Ounpuu & Delp, 2003; Higginson et al., 2006). Predictive simulations of

musculoskeletal motion likewise have many potential clinical applications, such as

optimizing the design of assistive devices, predicting the outcomes of surgeries, and

testing theories of movement control. The predictive approach is in many ways more

powerful, given the ability to answer “what-if” types of questions, and the possibility to

consider a wide range of conditions not limited to a set of experimental data. Despite these

potential strengths, predictive musculoskeletal simulation has only seen limited use in

clinical applications (e.g., Mansouri et al., 2016). This is due to many challenges such as

the considerable computational demands (Anderson & Pandy, 2001), difficulty in defining

relevant performance criteria (Ackermann & van den Bogert, 2010), and the substantial

computer programming requirements involved.

Several commercial and open-source software packages are available that greatly

facilitate modeling and simulation of the musculoskeletal system including OpenSim

(Delp et al., 2007), AnyBody (Damsgaard et al., 2006), MSMS (Davoodi & Loeb, 2011)

and SIMM/Dynamics Pipeline (Delp & Loan, 2000). In the present work, we utilized

OpenSim because it is open-source and freely available, and it has a robust

application programming interface (API). OpenSim provided a variety of tools for

musculoskeletal modeling and simulation, such as for conducting forward dynamics

and static optimization analyses. Among them, OpenSim provides a tool for generating

tracking simulations without any programming required on the part of the user,

employing an algorithm known as computed muscle control (Thelen & Anderson, 2006).

However, the tools provided with the OpenSim end-user application do not provide

the ability to generate predictive optimal control simulations. Users may extend the

capabilities of OpenSim via the API, but this requires writing computer programs or

plug-ins that interface directly with the OpenSim C++ libraries (Seth et al., 2011).

Using this approach, it is possible for a knowledgeable programmer to write a C++

program to, for example, generate entirely predictive simulations of human walking

(Dorn et al., 2015). Most of the C++ methods in recent versions of OpenSim

(since version 3.0) are also accessible via scripting languages such as MATLAB (The

MathWorks, Inc.) and Python (http://www.python.org). In this article, we focus on

MATLAB due to its widespread use in the biomechanics community. MATLAB includes

powerful design and control features and offers a more user-friendly programming

environment than C++. Mansouri & Reinbolt (2012) recently linked OpenSim with

MATLAB via the Simulink S-function API to create feedback controllers that act upon

OpenSim models, allowing open- or closed-loop simulations to be run from within

MATLAB. In the present work we employed a different approach, using the MATLAB

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 2/18

http://www.python.org
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

scripting interface to the OpenSim API to solve musculoskeletal optimal control

problems.

Optimal control is a general framework that has seen frequent use in solving

musculoskeletal movement problems (Hatze, 1976; Davy & Audu, 1987; Pandy, Anderson &

Hull, 1992). In the present work, we employed a direct collocation (DC) approach, which

has been applied extensively in the aerospace field (Betts, 2010) and has recently seen

increased use in biomechanics (e.g., Kaplan & Heegaard, 2001; Stelzer & von Stryk, 2006;

Ackermann & van den Bogert, 2010; Kistemaker, Wong & Gribble, 2014). DC is well-suited for

solving both predictive and tracking problems, as well as multi-objective problems that

include weighted performance and tracking terms in the objective function (van den Bogert

et al., 2012). In some cases, DC may hold a substantial performance advantage over

traditional shooting methods. Ackermann & van den Bogert (2010) generated entirely

predictive simulation of human walking with a two-dimensional (2-D) musculoskeletal

model in about 30 min using DC on routine computer hardware. Our comparable

simulations generated using a shooting method with a simulated annealing algorithm

required over 48 hr when run on a high-performance computer workstation (Umberger,

2010). Another distinct advantage of the DC approach is that it can easily handle final-time

equality constraints, such as the periodicity constraints that arise in simulating cyclical

movements such as walking or running (van den Bogert, Blana & Heinrich, 2011).

With the DC approach, the original optimal control problem is converted to a

parameter optimization problem by discretizing the states and controls on a temporal

grid, and treating both the states and controls as unknowns in a general nonlinear

programming (NLP) problem (Betts, 2010; Kaplan & Heegaard, 2001; van den Bogert,

Blana & Heinrich, 2011). The MATLAB Optimization Toolbox includes a solver, fmincon,

that can solve NLP problems with general equality, inequality and bound constraints.

MATLAB can also interface with the open-source solver IPOPT (Wächter & Biegler, 2006)

and the commercial solver SNOPT (Gill, Murray & Saunders, 2005) via the MEX-

interface. IPOPT and SNOPT have the potential to substantially outperform fmincon by

exploiting sparsity in the constraints Jacobian matrix that arises when the system

dynamics are converted to a large set of algebraic equality constraints. In this paper, we

focus on fmincon and IPOPT because fmincon is included with most installations of

MATLAB and IPOPT is freely available. Moreover, we focus on predictive musculoskeletal

simulation as OpenSim already provides the mean to generate tracking simulations via the

computed muscle control algorithm.

In the work presented here, we combine the computational tools provided byMATLAB

with the musculoskeletal modeling capabilities of OpenSim to create a framework for

generating optimal control simulations of musculoskeletal movement using DC. This

framework should allow biomechanics researchers to more easily and rapidly generate

predictive simulations of human movement. We provide detailed results for a simple

model with two antagonistic muscles, and we also evaluate the scalability of the approach

on a larger 2-D model of the human lower limb. In order for other investigators to more

easily apply this approach to their own research, we have made a complete working

example freely available on the SimTK website (http://simtk.org/home/directcolloc).

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 3/18

http://simtk.org/home/directcolloc
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

MATERIALS AND METHODS
We begin by outlining the general optimal control problem formulation and then describe

the way in which the capabilities of OpenSim and MATLAB were combined to solve these

types of problems using the DC approach. Two examples are then presented to demonstrate

the utility of the approach on a simple problem and on a larger-scale problem.

Problem formulation
The optimal control problems presented herein can be stated as: find the states x(t) and

controls u(t) that minimize an objective function

J ¼
Z T

0

LðxðtÞ; uðtÞÞdt (1)

subject to constraints represented by the system dynamical equations

_xðtÞ ¼ f ðxðtÞ;uðtÞ; tÞ (2)

bound constraints on the states and controls

xmin � xðtÞ � xmax (3)

0 � uðtÞ � 1 (4)

and problem-specific task constraints (Ackermann & van den Bogert, 2010; Davy &

Audu, 1987; Pandy, Anderson & Hull, 1992). A common use of task constraints is to ensure

periodicity of simulated cyclical motions, such as walking or running, by requiring that

xðTÞ ¼ xð0Þ (5)

uðTÞ ¼ uð0Þ (6)

where T is the final time. Additional or different task constraints may be specified for

other specific movement problems, as will be seen in the examples presented here. The

controls referred to above represent muscle excitations that were bounded between

0 (quiescent) and 1 (maximally excited) (Eq. 4). If desired, one can set the lower bound

above 0 for part or all of the simulation time to require that a muscle be recruited above

some threshold. Likewise, the upper bound can be set below 1 to prevent excitation above

a prescribed, submaximal value.

The optimal control problems were converted to parameter optimization problems

using the DC approach. The states and controls were discretized in time and the

dynamical constraints (Eq. 2) were expressed as a large set of algebraic constraints using

an Euler discretization

xiþ1 � xi

�t
� f iþ1 ¼ 0 (7)

where�t¼ ti + 1 − ti and fi + 1 represents the time derivatives of the state variables at time

step i+1, as described in more detail in the next section. The reader is referred to the text

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 4/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

by Betts (2010) and the appendix provided by Ackermann & van den Bogert (2010) for

further details on the discretization scheme.

OpenSim-MATLAB interface
OpenSim was interfaced with MATLAB using the OpenSim API (Seth et al., 2011).

MATLAB is used to set-up and solve the optimization problems and OpenSim is used to

represent the dynamics of the musculoskeletal system (Fig. 1). OpenSim itself relies on the

Simbody dynamics engine (not shown in Fig. 1) for multibody dynamics and other

numerical operations (Sherman, Seth & Delp, 2011). The key link between OpenSim and

MATLAB occurs at the block in Fig. 1 labeled “State Derivatives,” which corresponds to

the Euler discretization scheme described by Eq. (7). The values of the vector term fi + 1 in

Eq. (7) may be obtained from OpenSim for a particular set of discretized states and

controls by evaluating Eq. (2). If calculating the value of the objective function requires

the magnitudes of any quantities that are implicit functions of the states and controls

(e.g., contact forces, muscle powers), these may also be obtained by calling the appropriate

OpenSim methods from within MATLAB.

The initial guesses for the optimization parameters are read from two OpenSim

storage (.sto) files, labeled InitialStates.sto and InitialControls.sto in Fig. 1. The results

of an optimization are written to two similar files, labeled OptimalStates.sto and

OptimalControls.sto in Fig. 1. This allows the initial guesses and final results to be easily

visualized in the OpenSim graphical user interface (GUI). Intermediate result files may

optionally be written as an optimization progresses to allow the intermediate motion to be

viewed in the OpenSim GUI. The storage files containing the final results allow for easy

Figure 1 OpenSim-MATLAB interface for solving optimal control problems using direct

collocation. Communication between MATLAB and OpenSim occurs via the OpenSim API. The

green boxes represent the optimization process set up in MATLAB. The blue boxes represent the

computational processes in OpenSim. The yellow boxes represent input and output files. The green-blue

box labeled “State Derivatives” represents the discretization in the direct collocation approach. The

initial guess and optimal result may be visualized in the OpenSim graphical user interface.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 5/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

execution of forward dynamics simulations based on the DC results using the OpenSim

ForwardDynamics tool. Forward simulations are generated using the states from the first

time point in the OptimalStates.sto file as the initial conditions and the muscle excitations

from all time points in the OptimalControls.sto files as the controls.

Simple model
To demonstrate the DC approach using the OpenSim-MATLAB interface, we used a

simple 1 degree of freedom (DOF) model consisting of a block acted upon by twomuscles,

resulting in a model with 6 states and 2 controls (Fig. 2A). The model is able to translate

along the mediolateral axis (Z axis in Fig. 2A) as it is acted upon by the two muscles, one

of which pulls in the positive direction with the other one pulling in the negative

direction. The simple model was modified from the “Tug of War” example (Tug_of_War.

osim) that is provided with OpenSim. In the original example model, the block has 6 DOF

and 5 constraints to produce uniaxial sliding. We replaced the 6 DOF free joint with a

1 DOF slider joint to eliminate the constraints and reduce the size of the state space. We

also modified the tendon slack lengths from the example such that the muscles operate

closer to the plateau of the force-length curve for the movement task that was simulated.

For this study, both muscles had peak isometric forces of 1000 N, optimal fiber lengths of

0.25 m, tendon slack lengths of 0.05 m, and pennation angles of 0�.
Predictive simulations were generated where the target motion for the block was to

begin at rest from a starting position of −0.08 m along the mediolateral axis, translate to a

position of 0.08 m halfway through the movement time, and then return to the original

state in a total movement time of 1.0 s. The actual movement was unspecified, other than

for these task constraints defined at the initial time, the midpoint, and the final time.

Other constraints were enforced such that the states and controls at the final time should

Figure 2 OpenSim models used in this project. (A) Simple model with 1 degree of freedom and two

muscles. The central block can move freely along the Z-axis between the left and right anchor blocks. The

simple model has 6 states and 2 controls, and was based on the Tug_Of_War.osim model provided with

OpenSim. (B) Two-dimensional lower limb model with 3 degrees of freedom and 9 muscles. The lower

limb model has 24 states and 9 controls, and was based on the leg6dof9musc.osim model provided with

OpenSim.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 6/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

match the states and controls at the initial time (Eqs. 5 and 6). The objective function was

to minimize the sum of squared muscle activation integrals

J ¼ 1

T

Xm

i¼1

Z T

0

a2i ðtÞdt (8)

where ai is the instantaneous activation of the ith muscle andm is the number of muscles.

The NLP problem was solved at a range of grid densities from 25–501 nodes (25, 51, 101,

151, 201, 301, 401 and 501 nodes). Solutions were obtained for IPOPTat all grid densities

and for fmincon (interior-point algorithm) up to 201 nodes. The computation time for

fmincon on the denser grids was too long (>1 day) to be of practical value for such a small

problem.

An initial guess was generated by running a 1.0 s forward simulation where the model

began static at an initial position of 0.0 m and did not move because the muscle controls

were both set to zero. This will be referred to as the ‘static’ initial guess. For IPOPT, the

NLP problem was solved two different ways; once using the static initial guess at all grid

densities, and again using a grid refinement approach. For fmincon, the NLP problemwas

only solved using grid refinement, as convergence was too slow using the static initial

guess. In the grid refinement approach, the initial guess at a particular grid density was the

solution obtained from the next lower (i.e., coarser) grid density, except for the 25 node

grid where there was no lower grid density. For example, the 101 node case was solved

using the static initial guess and again using the optimal result obtained for the 51 node

grid. For this particular movement task, we always used an odd number of nodes because

of the constraint at the middle time point. For the 25 node case there were 200 unknowns

and 156 constraints, while for the 501 node case there were 4008 unknowns and 3012

constraints. We evaluated the solutions by comparing the results obtained across the

different grid densities, and by comparing the results at each grid density with forward

simulations based on the optimal controls and optimal initial conditions obtained from

the DC optimizations.

Lower limb model
To evaluate the DC approach using OpenSim-MATLAB on a larger scale and more

anatomically realistic model, we generated predictive simulations of lower limb

movement using a sagittal plane, 3 DOF model of the human lower limb actuated by

9 muscles (Fig. 2B). The lower limb model had a total of 24 states and 9 controls. This

model was modified from another example provided with OpenSim (leg6dof9musc.osim)

and is based upon the standard three-dimensional OpenSim gait models (Delp et al., 1990;

Anderson & Pandy, 2001) with a reduced set of muscles. The example model provided with

OpenSimwas modified to fix the pelvis segment in space and passive restraining moments

were added to represent the contributions of ligaments and capsular tissues to the net

joint moments (Davy & Audu, 1987).

For the lower limbmodel, predictive simulations were generated of a discrete, point-to-

point movement. The model was required to move between an initial relaxed, hanging

position and a final target posture (hip: flexed 80�, knee: flexed 85�, ankle: neutral 0�) in a

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 7/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

fixed amount of time (0.75 s) while minimizing the sum of squared muscle activations

(Eq. 8). At the final target posture, all generalized velocities had to be equal to zero. The

desired initial and final states of the system were enforced using an appropriate set of task

constraints. The motions and muscle activation patterns were unconstrained between the

initial and final times. The initial guess for the lower limb optimizations was derived from

a 0.75 s forward simulation where the joints were extended and the muscle controls were

all set to an arbitrary, low value (2% of maximum). The lower limb movement problem

was only solved using IPOPT, as convergence with fmincon proved too slow even on this

modestly sized model. Results were obtained using grid refinement with grid densities of

25, 50, 100 and 200 nodes. The results at 100 and 200 nodes were nearly identical and

detailed results are only presented for 200 nodes. For the 25 node case there were 825

unknowns and 615 constraints, while for the 200 node case there were 6600 unknowns

and 4815 constraints. For this project, our goal with the lower limb model was to evaluate

the feasibility of using the DC approach in OpenSim-MATLAB with a model more

complex than the simple 1 DOF model, rather than analyzing the optimal motions and

activation patterns and comparing them with actual human behaviors. For both the

simple and lower limb models, the objective function gradient and the constraints

Jacobian were approximated using forward finite differences. All optimizations were run

on the same laptop computer with a 2.30 GHz Intel i5-5300U processor and 8 GB of

RAM. The reported results were obtained using OpenSim release 3.3, MATLAB release

8.5, and IPOPT release 3.11.0.

RESULTS
For the simple 1-DOF model, all node densities resulted in approximately sinusoidal

motions (Fig. 3) with phasic muscle activity (Fig. 4) that satisfied the endpoint and

midpoint constraints. This was true even when the initial guess (blue dotted lines in

Figs. 3A and 4A) was far from the final result. There was little difference in the optimal

motions above 101 nodes (Figs. 3D–3H) and little difference in the activations above 151

nodes (Figs. 4E–4H). Forward simulations based on the optimal controls and initial states

reproduced the results obtained with DC for grid densities above 101 nodes. The results

shown in Figs. 3 and 4 are for IPOPTusing the grid refinement approach, where the initial

guesses at each grid density were based on the optimal results obtained for the next lower

grid density. The results were virtually identical when the static initial guess was used for

all grid densities. However, it took on average 4 times longer for the optimizations to

converge to the final solutions when starting from the static initial guess (Fig. 5B). The

results for fmincon were also nearly identical to the IPOPT results using the grid

refinement approach up to 201 nodes, which was the densest grid used with fmincon.

With increasing node density, the minimum objective function value (Fig. 5A), which

is proportional to the area under the activation curves in Fig. 4, decreased considerably

until 151 nodes, with little further reduction on denser grids. The same pattern was

observed using either the static initial guess or grid refinement. For this particular

problem, there would be little reason to use node densities greater than 201 nodes,

as the results are nearly identical and the convergence time was substantially longer

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 8/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

(Figs. 5B and 5C). Even at 25 nodes (Figs. 3A and 4A), the optimal results were

qualitatively similar to the results obtained with greater numbers of nodes. The two

solvers that were used, fmincon and IPOPT, generally converged to the same solutions;

however, the execution times were dramatically different. Up to 201 nodes, fmincon took

on average 260 times longer to converge that IPOPT (Figs. 5B and 5C).

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

A

Initial Guess
25 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

B

25 nodes
51 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

C

51 nodes
101 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

D

101 nodes
151 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

P
o

si
ti

o
n

 (
m

)

E

151 nodes
201 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

F

201 nodes
301 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

Time (sec)

P
o

si
ti

o
n

 (
m

)

G

301 nodes
401 nodes
Forward Sim.

0 0.2 0.4 0.6 0.8 1

−0.05

0

0.05

Time (sec)

H

401 nodes
501 nodes
Forward Sim.

Figure 3 Position of the block versus time for the simple model optimal control problem. Result obtained using IPOPTare shown for different

numbers of nodes using a grid refinement approach. Nearly identical results were obtained when the optimization at each node density was started

from the static initial guess (blue dotted line in panel (A)). The results obtained using fmincon were also nearly identical to the IPOPTresults up to

201 nodes. Solutions at greater node densities were not obtained using fmincon due to excessive computation time. Also shown in each panel are

the results of a forward simulation (Forward Sim.) based on the optimal controls and initial conditions. The forward simulation results closely

match the DC trajectories for node densities of 101 and greater.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 9/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

For the discrete, lower limb movement task, the model moved smoothly from the

relaxed, initial state to the final, target posture in the specified amount of time (Fig. 6).

The results were similar for all node densities and were nearly identical for 100 and 200

nodes (the 200 node results are shown in Fig. 6). Computation time was 1164 s at 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

M
u

sc
le

 A
ct

iv
at

io
n

A Mus 1, Initial Guess

Mus 1, 25 nodes
Mus 1, Forward Sim.

Mus 2, Initial Guess
Mus 2, 25 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

B Mus 1, 25 nodes

Mus 1, 51 nodes
Mus 1, Forward Sim.

Mus 2, 25 nodes
Mus 2, 51 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

M
u

sc
le

 A
ct

iv
at

io
n

C Mus 1, 51 nodes

Mus 1, 101 nodes
Mus 1, Forward Sim.

Mus 2, 51 nodes
Mus 2, 101 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

D Mus 1, 101 nodes

Mus 1, 151 nodes
Mus 1, Forward Sim.

Mus 2, 101 nodes
Mus 2, 151 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

M
u

sc
le

 A
ct

iv
at

io
n

E Mus 1, 151 nodes

Mus 1, 201 nodes
Mus 1, Forward Sim.

Mus 2, 151 nodes
Mus 2, 201 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

F Mus 1, 201 nodes

Mus 1, 301 nodes
Mus 1, Forward Sim.

Mus 2, 201 nodes
Mus 2, 301 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

M
u

sc
le

 A
ct

iv
at

io
n

Time (sec)

G Mus 1, 301 nodes

Mus 1, 401 nodes
Mus 1, Forward Sim.

Mus 2, 301 nodes
Mus 2, 401 nodes
Mus 2, Forward Sim.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Time (sec)

H Mus 1, 401 nodes

Mus 1, 501 nodes
Mus 1, Forward Sim.

Mus 2, 401 nodes
Mus 2, 501 nodes
Mus 2, Forward Sim.

Figure 4 Muscle activations versus time for the simple model optimal control problem. Result obtained using IPOPT are shown for different

numbers of nodes using a grid refinement approach. Nearly identical results were obtained when the optimization at each node density was started

from the static initial guess (blue dotted line in panel (A)). The results obtained using fmincon were also nearly identical to the IPOPTresults up to

201 nodes. Solutions at greater node densities were not obtained using fmincon due to excessive computation time. Also shown in each panel are

the results of a forward simulation (Forward Sim.) based on the optimal controls and initial conditions. The forward simulation results closely

match the DC trajectories for node densities of 151 and greater.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 10/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

nodes and 7802 s at 200 nodes. Forward simulations based on the optimal controls and

initial states closely matched the DC results at 200 (Fig. 6) and 100 nodes, but did not

match as closely at 50 and 25 nodes, consistent with the results obtained for the simple

model. The optimal muscle activation patterns were consonant with the requirements of

the simulated task and the minimum activation objective function. Activations were

uniformly low inmuscles that generate exclusively extensionmoments (Figs. 6F, 6I and 6K),

while there were distinct bursts of activation in the muscles that generate only flexion

moments (Figs. 6E, 6G and 6L). The results for biarticular muscles were more variable. The

rectus femoris (Fig. 6H), which generates hip flexion and knee extension moments, was

active until the knee joint started to flex around the middle of the movement time (Fig. 6B),

at which point the gastrocnemius (Fig. 6J), which generates knee flexion and ankle

extension moments, became active. When the rectus femoris activity ceased (Fig. 6H),

iliopsoas activity increased (Fig. 6G), as it was the only remaining muscle that could

generate the necessary hip flexion moment. The activity in the hamstrings (Fig. 6D), which

generates hip extension and knee flexion moments, was low throughout the movement. All

of the results for the simple and lower limb model optimal control problems are available

on the SimTK website (http://simtk.org/home/directcolloc).

DISCUSSION
We used the MATLAB interface to the OpenSim API to develop a new framework for

solving musculoskeletal optimal control problems. This approach effectively combines the

high-level programming, design and control capabilities of MATLAB with the

musculoskeletal modeling, simulation and analysis tools provided by OpenSim. Within

this framework, we used the direct collocation technique to solve two predictive problems;

Number of Nodes
0 200 400 600

O
b

je
ct

iv
e

F
u

n
ct

io
n

 V
al

u
e

0

1

2

3

4

A

IPOPT

fmincon

Number of Nodes
0 200 400 600

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

0

500

1000

1500

2000 B
IPOPT

static

refine

Number of Nodes
0 200 400 600

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

 0

10000

20000

30000

40000 C
fmincon

refine

Figure 5 Optimization algorithm performance for the simple model optimal control problem. (A) Minimum objective function value (sum of

squared muscle activation integrals, scaled by 100) for different numbers of nodes. At matched node densities, the IPOPT and fmincon solvers

converged to the same object function values, except for a minor difference at 25 nodes. There was little difference in the minimum objective

function value above 151 nodes. (B) Computation time using IPOPTwith different numbers of nodes for the static initial guess (static) and using

grid refinement (refine). The minimum objective function values were the same using the static initial guess and the grid refinement approach, but

the results were obtained considerably faster using grid refinement. (C) Computation time using fmincon with different numbers of nodes for the

grid refinement approach. Results were only obtained for fmincon using grid refinement up to 201 nodes. Convergence was too slow with fmincon

using the static initial guess or using either approach above 201 nodes.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 11/18

http://simtk.org/home/directcolloc
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

a periodic motion problem using a simple musculoskeletal model and a discrete motion

problem using a more realistic model of the human lower limb. Both problems were

solved with reasonable computational demands using the IPOPTsolver. The simple model

optimal control problem could also be solved using the fmincon solver, but the

computation times were too long to be of general use. Our intent is that this framework

will facilitate the application of predictive biomechanical simulation to solving clinically-

relevant human movement problems.

The IPOPT solver (Wächter & Biegler, 2006) greatly outperformed the fmincon solver

from the MATLAB Optimization Toolbox (Figs. 5B and 5C). The performance advantage

for IPOPT is primarily derived by exploiting sparsity in the constraints Jacobian matrix.

Fewer than 5% of the elements of the constraints Jacobian were non-zero in the cases

considered here, creating the opportunity for considerable computational efficiencies.

0 0.2 0.4 0.6

H
ip

 A
n

g
le

 (
d

eg
)

0

50

100 A

0 0.2 0.4 0.6

K
n

ee
 A

n
g

le
 (

d
eg

)

-100

-50

0
B

Joint Kinematics

0 0.2 0.4 0.6

A
n

kl
e

A
n

g
le

 (
d

eg
)

-60

-40

-20

0

20 C

0 0.2 0.4 0.6

H
am

st
ri

n
g

s

0

0.5

1 D

0 0.2 0.4 0.6

B
ic

 F
em

 S
H

0

0.5

1 E

Muscle Activations

0 0.2 0.4 0.6

G
lu

t
M

ax

0

0.5

1 F

Initial Guess
DC 200 nodes
Forward Sim.

0 0.2 0.4 0.6

Ili
o

p
so

as

0

0.5

1 G

0 0.2 0.4 0.6

R
ec

t
F

em

0

0.5

1 H

0 0.2 0.4 0.6

V
as

ti

0

0.5

1 I

Time (s)
0 0.2 0.4 0.6

G
as

tr
o

c

0

0.5

1 J

Time (s)
0 0.2 0.4 0.6

S
o

le
u

s

0

0.5

1 K

Time (s)
0 0.2 0.4 0.6

T
ib

 A
n

t

0

0.5

1 L

Figure 6 Joint kinematics (A–C) and muscle activations (D–L) for the lower limb optimal control

problem. Result were obtained using IPOPT with a grid refinement approach (25, 50, 100 and 200

nodes). The dotted blue lines are the initial guess used at the 25 node density. The solid black lines are the

optimal results for the 200 node density. The dashed red lines (overlying the solid black lines) are the

results of a forward dynamics simulation (Forward Sim.) based on the optimal controls and initial

conditions obtained at 200 nodes.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 12/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

However, IPOPT places more demands on the user, which can translate into considerable

up-front costs. To use fmincon for the types of problems described here, the user needs to

provide functions that return the value of the objective function and the values of the

equality constraints. IPOPT has similar requirements, but also obligates the user to

provide functions that return the gradient of the objective function with respect to the

unknowns, the constraints Jacobian matrix, and the sparsity pattern of the constraints

Jacobian. The fmincon algorithm will automatically calculate finite difference

approximations for any derivatives that are not provided by the user; however, that is not

the case for IPOPT. When using IPOPTwith numerical derivatives, the user is responsible

for issues such as choosing the ideal step sizes for the finite differences (Curtis & Reid,

1974) and calculating the non-zero elements of the sparse constraints Jacobian as

efficiently as possible (Curtis, Powell & Reid, 1974). The process of determining the

sparsity structure of the constraints Jacobian can itself be a time-consuming and error-

prone task for problems with thousands of unknowns and constraint. However, that task

need only be performed once for a particular model and movement problem, and the

benefits can be substantial (compare times in Figs. 5B with 5C). The performance of both

fmincon and IPOPT can benefit from analytical gradients and Jacobians if provided by the

user, though IPOPTshould still hold a considerable performance advantage due to the use

of sparse linear algebra. Unfortunately, it is not always possible to obtain analytical

expressions for the required derivatives when interfacing with OpenSim, which is a

potential limitation of the approach presented here.

The objective function used in this work was an explicit function of the model states;

therefore, it would be possible to derive an analytical expression for the gradient of the

objective function with respect to the unknown parameters. However, the same is not true

for the constraints Jacobian, which is where most of the time is spent in the optimization

algorithms. OpenSim does not provide the full system dynamical equations in symbolic

form, as could be obtained with dynamics software such as MotionGenesis (http://www.

motiongenesis.com) or MapleSim (http://www.maplesoft.com/products/maplesim).

OpenSim, via the Simbody dynamics engine, can return the time derivative of any state

variable, or any other quantities of interest such as contact forces or muscle forces, but it

does so without forming the relevant equations in full symbolic form (Sherman, Seth &

Delp, 2011). An advantage of having the full symbolic equations is that analytical gradient

vectors and Jacobian matrices can readily be determined, which should speed up the most

time-consuming part of solving the NLP. There is a trade-off though, as the approach used

by OpenSim has the advantage of greatly facilitating model development and analysis,

while relieving the user from many lower-level details such as deriving symbolic equations

of motions.

For the cases studied here, optimal results were obtained using IPOPT in times ranging

from 15 s to 2 hr, depending on the node density and model complexity. The 2-D walking

simulations generated by Ackermann & van den Bogert (2010) using a 50 node

discretization had approximately the same number of unknowns and constraints as the

lower limb movement simulations in the present study for the 100 node discretization.

The computation time for the lower limbmovement task for 100 nodes was 30 min, which

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 13/18

http://www.motiongenesis.com
http://www.motiongenesis.com
http://www.maplesoft.com/products/maplesim
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

is similar to the 35 min time reported for the 2-D walking simulations (Ackermann &

van den Bogert, 2010). This comparison should be made cautiously as the computer used

for the present work was likely faster, while Ackermann & van den Bogert (2010) used

SNOPT, which has better convergence properties than IPOPT (van den Bogert, Blana &

Heinrich, 2011). These two factors should at least partially offset, suggesting that this

comparison may be reasonable as a first approximation. While the actual time required to

generate walking simulations using IPOPT with the present framework will need to be

determined, even if it requires several hours it will be highly competitive with traditional

shooting methods (e.g., Anderson & Pandy, 2001; Miller et al., 2012; Neptune, Kautz &

Zajac, 2001; Umberger, 2010). However, for tracking problems, the computed muscle

control algorithm (Thelen & Anderson, 2006) that is included with OpenSim will likely be

much faster than DC. Tracking problems involving large-scale, three-dimensional

musculoskeletal models can be solved in a few hours or less using computed muscle

control (Saul et al., 2015; Thelen & Anderson, 2006). Despite being slower, DC may still be

preferred over computed muscle control for some tracking problems due to the flexibility

it affords, such as in defining the cost function, or in placing arbitrary constraints on the

solution. However, the actual computational demands of using DC via the OpenSim-

MATLAB interface with large-scale musculoskeletal models will need to be evaluated in

future research.

Convergence with the fmincon algorithm from theMATLABOptimization Toolbox was

too slow to be of much practical value, even for the simple model optimal control problem.

This was due almost entirely to the inability of fmincon to make use of the known sparsity

pattern of the constraints Jacobian.We informally compared the impact on performance of

requiring IPOPT to use a dense Jacobian and found that it was only marginally faster than

fmincon, rather than being over 100 times faster when the sparse Jacobian was used. Some

of the other solvers in the MATLAB Optimization Toolbox (e.g., fsolve, lsqnonlin) can use

sparsity information in the evaluation of Jacobian matrices, so perhaps future releases of

fminconwill include this feature. Given access to a computer cluster, fmincon could also be

run in parallel using the MATLAB Parallel Computing Toolbox. Given the large number of

independent elements in the constraints Jacobian, performance could be dramatically

increased given enough compute nodes. However, even without any performance

enhancements, fmincon is still useful for development work as it is easier to use than

IPOPT. We found that problems could be more easily tested and debugged using fmincon,

before switching to IPOPT to gain the performance advantage.

A key aspect of the DC approach is deciding on the minimally acceptable grid density.

For the lower limb discrete movement task, the 100 node solution was nearly

indistinguishable from the 200 node solution, suggesting that the 100 node density could

be used for future studies. However, this could only be determined by first solving the 200

node case. The cumulative computation time for obtaining the 200 node solution,

including the grid refinement process, was over 3 hours. However, once that process was

complete, related optimization problems, such as different final postures or different

movement times, could be solved at the 100 node density in about 20–30 min each.

Indeed, one of the strengths of DC is in rapidly solving several closely related optimization

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 14/18

http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

problems, once an initial problem has been solved (e.g., Ackermann & van den Bogert,

2010; van den Bogert et al., 2012). While we used fixed grid spacing in this work, it is

possible to optimize the spacing used in the grid refinement process based on estimates of

the discretization error at each grid density, which may confer additional performance

benefits (Betts, 2010).

In this study, we leveraged the relatively new MATLAB interface to the OpenSim API.

This allowed all of the programming to be done in the high-level MATLAB environment,

while the musculoskeletal modeling and related numerical calculations were handled by

the robust and efficient OpenSim C++ libraries. OpenSim itself relies on the Simbody

dynamics engine (Sherman, Seth & Delp, 2011), which is built upon state-of-the-art

numerical routines such as LAPACK (Anderson, 1999). Our use of MATLAB to interface

with OpenSim is distinct from the approach reported previously where MATLAB was

linked with OpenSim via a Simulink S-function (Mansouri & Reinbolt, 2012). In that

project, an OpenSim model was wrapped in a Simulink block using the S-function API

and then used to run both open-loop and closed-loop forward simulations from

MATLAB/Simulink. That approach, and the one presented here, are indeed

complimentary and simply suited to different purposes. While we used MATLAB in the

current applications, the OpenSim API is also accessible from Python, as is the IPOPT

solver. Python is an open-source high-level programming language with many numerical

and scientific computing capabilities (Millman & Aivazis, 2011). Thus, it should be

possible for other researchers to replicate the approach presented here using either

MATLAB or Python.

In this project, we use DC to solve the optimal control problem (Kaplan & Heegaard,

2001; Ackermann & van den Bogert, 2010), but several other approaches have been used to

generate simulations of a variety of humanmovements. The traditional approach has been

to use a low-dimensional (e.g., Neptune, Kautz & Zajac, 2001; Umberger, 2010) or high-

dimensional (e.g., Anderson & Pandy, 2001; Miller et al., 2012) discretization of the

controls only, and then perform forward integrations of the dynamical equations in order

to evaluate the objective function and constraints. Other recent approaches include

modeling muscle reflexes (Geyer & Herr, 2010) and global parameterization of muscle

forces using Fourier series (Shourijeh & McPhee, 2014). These other approaches could

likely also be implemented using OpenSim andMATLAB and would be subject to many of

the same strengths and weaknesses described herein. The example code provided with this

article may prove to be a useful starting point for researchers implementing these other

approaches via OpenSim and MATLAB.

CONCLUSIONS
The OpenSim-MATLAB interface provides a powerful and flexible approach for

generating optimal control simulations of musculoskeletal movement using the DC

approach. This should facilitate the use of optimal control in developing therapies and

assistive devices for clinical conditions that limit human mobility. Interested readers are

encouraged to download and try the example provided on the SimTK website (http://

simtk.org/home/directcolloc).

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 15/18

http://simtk.org/home/directcolloc
http://simtk.org/home/directcolloc
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

ACKNOWLEDGEMENTS
We thank Russell Johnson for his assistance with this project and Ayman Habib and Ajay

Seth for their assistance with the OpenSim API.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was supported by grants from the National Science Foundation (BCS

0935327, IIS 1526986) and a Pilot grant from the National Center for Simulation in

Rehabilitation Research. The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

National Science Foundation: BCS 0935327, IIS 1526986.

National Center for Simulation in Rehabilitation Research: Pilot.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Leng-Feng Lee conceived and designed the experiments, performed the experiments,

analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,

prepared figures and/or tables, reviewed drafts of the paper.

� Brian R. Umberger conceived and designed the experiments, performed the

experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the

paper, prepared figures and/or tables, reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding data availability:

SimTK repository: http://simtk.org/home/directcolloc.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.1638#supplemental-information.

REFERENCES
Ackermann M, van den Bogert AJ. 2010. Optimality principles for model-based prediction of

human gait. Journal of Biomechanics 43(6):1055–1060 DOI 10.1016/j.jbiomech.2009.12.012.

Anderson FC, Pandy MG. 2001. Dynamic optimization of human walking. Journal of

Biomechanical Engineering 123(5):381–390 DOI 10.1115/1.1392310.

Anderson E. 1999. LAPACK Users’ Guide. Phildelphia: SIAM DOI 10.1137/1.9780898719604.

Betts JT. 2010. Practical Methods for Optimal Control and Estimation Using Nonlinear

Programming. Phildelphia: SIAM DOI 10.1137/1.9780898718577.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 16/18

http://simtk.org/home/directcolloc
http://dx.doi.org/10.7717/peerj.1638#supplementalnformation
http://dx.doi.org/10.7717/peerj.1638#supplementalnformation
http://dx.doi.org/10.1016/j.jbiomech.2009.12.012
http://dx.doi.org/10.1115/1.1392310
http://dx.doi.org/10.1137/1.9780898719604
http://dx.doi.org/10.1137/1.9780898718577
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

Curtis AR, Powell MJD, Reid JK. 1974. On the estimation of sparse Jacobian matrices. Journal of

the Institute of Mathematics and its Applications 13(1):117–119 DOI 10.1093/imamat/13.1.117.

Curtis AR, Reid JK. 1974. The choice of step lengths when using differences to approximate

Jacobian matrices. Journal of the Institute of Mathematics and its Applications 13(1):121–126

DOI 10.1093/imamat/13.1.121.

Damsgaard M, Rasmussen J, Christensen ST, Surma E, de Zee M. 2006. Analysis of

musculoskeletal systems in the AnyBody modeling system. Simulation Modelling Practice and

Theory 14(8):1100–1111 DOI 10.1016/j.simpat.2006.09.001.

Davoodi R, Loeb GE. 2011. MSMS software for VR simulations of neural prostheses and patient

training and rehabilitation. Studies in Health Technology and Informatics 163:156–162.

Davy DT, Audu ML. 1987. A dynamic optimization technique for predicting muscle forces in the

swing phase of gait. Journal of Biomechanics 20(2):187–201DOI 10.1016/0021-9290(87)90310-1.

Delp SL, Loan JP. 2000. A computational framework for simulating and analyzing human and

animal movement. Computing in Science & Engineering 2(5):46–55 DOI 10.1109/5992.877394.

Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM. 1990. An interactive graphics-based

model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on

Biomedical Engineering 37(8):757–767 DOI 10.1109/10.102791.

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. 2007.

OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE

Transactions on Biomedical Engineering 54(11):1940–1950 DOI 10.1109/TBME.2007.901024.

Dorn TW, Wang JM, Hicks JL, Delp SL. 2015. Predictive simulation generates human adaptations

during loaded and inclinedwalking.PLoSONE 10(4):e121407DOI10.1371/journal.pone.0121407.

Fey NP, Klute GK, Neptune RR. 2012. Optimization of prosthetic foot stiffness to reduce

metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study.

Journal of Biomechanical Engineering 134(11):111005 DOI 10.1115/1.4007824.

Geyer H, Herr H. 2010. A muscle-reflex model that encodes principles of legged mechanics

produces human walking dynamics and muscle activities. IEEE Transactions on Neural Systems

and Rehabilitation Engineering 18(3):263–273 DOI 10.1109/TNSRE.2010.2047592.

Gill PE, Murray W, Saunders MA. 2005. SNOPT: An SQP algorithm for large-scale constrained

optimization. SIAM Review 47(1):99–131 DOI 10.1137/S0036144504446096.

Goldberg SR, Ounpuu S, Delp SL. 2003. The importance of swing-phase initial conditions in stiff-

knee gait. Journal of Biomechanics 36(8):1111–1116 DOI 10.1016/S0021-9290(03)00106-4.

Hatze H. 1976. The complete optimization of a human motion. Mathematical Biosciences

28(1–2):99–135 DOI 10.1016/0025-5564(76)90098-5.

Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL. 2006. Muscle contributions to

support during gait in an individual with post-stroke hemiparesis. Journal of Biomechanics

39(10):1769–1777 DOI 10.1016/j.jbiomech.2005.05.032.

Kaplan ML, Heegaard JH. 2001. Predictive algorithms for neuromuscular control of human

locomotion. Journal of Biomechanics 34(8):1077–1083 DOI 10.1016/S0021-9290(01)00057-4.

Kistemaker DA, Wong JD, Gribble PL. 2014. The cost of moving optimally: kinematic path

selection. Journal of Neurophysiology 112(8):1815–1824 DOI 10.1152/jn.00291.2014.

Mansouri M, Reinbolt JA. 2012. A platform for dynamic simulation and control of movement

based on OpenSim and MATLAB. Journal of Biomechanics 45(8):1517–1521

DOI 10.1016/j.jbiomech.2012.03.016.

Mansouri M, Clark AE, Seth A, Reinbolt JA. 2016. Rectus femoris transfer surgery affects

balance recovery in children with cerebral palsy: A computer simulation study. Gait and Posture

43:24–30 DOI 10.1016/j.gaitpost.2015.08.016.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 17/18

http://dx.doi.org/10.1093/imamat/13.1.117
http://dx.doi.org/10.1093/imamat/13.1.121
http://dx.doi.org/10.1016/j.simpat.2006.09.001
http://dx.doi.org/10.1016/0021-9290(87)90310-1
http://dx.doi.org/10.1109/5992.877394
http://dx.doi.org/10.1109/10.102791
http://dx.doi.org/10.1109/TBME.2007.901024
http://dx.doi.org/10.1371/journal.pone.0121407
http://dx.doi.org/10.1115/1.4007824
http://dx.doi.org/10.1109/TNSRE.2010.2047592
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1016/S0021-9290(03)00106-4
http://dx.doi.org/10.1016/0025-5564(76)90098-5
http://dx.doi.org/10.1016/j.jbiomech.2005.05.032
http://dx.doi.org/10.1016/S0021-9290(01)00057-4
http://dx.doi.org/10.1152/jn.00291.2014
http://dx.doi.org/10.1016/j.jbiomech.2012.03.016
http://dx.doi.org/10.1016/j.gaitpost.2015.08.016
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

Miller RH, Umberger BR, Hamill J, Caldwell GE. 2012. Evaluation of the minimum energy

hypothesis and other potential optimality criteria for human running. Proceedings of the Royal

Society B: Biological Sciences 279(1733):1498–1505 DOI 10.1098/rspb.2011.2015.

Millman KJ, Aivazis M. 2011. Python for scientists and engineers. Computing in Science &

Engineering 13(2):9–12 DOI 10.1109/MCSE.2011.36.

Neptune RR, Kautz SA, Zajac FE. 2001. Contributions of the individual ankle plantar flexors to

support, forward progression and swing initiation during walking. Journal of Biomechanics

34(11):1387–1398 DOI 10.1016/S0021-9290(01)00105-1.

Pandy MG. 2001. Computer modeling and simulation of human movement. Annual Review of

Biomedical Engineering 3:245–273 DOI 10.1146/annurev.bioeng.3.1.245.

Pandy MG, Anderson FC, Hull DG. 1992. A parameter optimization approach for the optimal

control of large-scale musculoskeletal systems. Journal of Biomechanical Engineering

114(4):450–460 DOI 10.1115/1.2894094.

Saul KR, Hu X, Goehler CM, Vidt ME, Daly M, Velisar A, Murray WM. 2015. Benchmarking of

dynamic simulation predictions in two software platforms using an upper limb musculoskeletal

model. Computer Methods in Biomechanics and Biomedical Engineering 18(13):1445–1458

DOI 10.1080/10255842.2014.916698.

Seth A, Sherman M, Reinbolt JA, Delp SL. 2011. OpenSim: a musculoskeletal modeling and

simulation framework for in silico investigations and exchange. Procedia IUTAM 2:212–232

DOI 10.1016/j.piutam.2011.04.021.

Sherman M, Seth A, Delp SL. 2011. Simbody: multibody dynamics for biomedical research.

Procedia IUTAM 2:241–261 DOI 10.1016/j.piutam.2011.04.023.

Shourijeh MS, McPhee J. 2014. Forward dynamic optimization of human gait simulations:

A global parameterization approach. Journal of Computational and Nonlinear Dynamics

9(3):031018 DOI 10.1115/1.4026266.

Stelzer M, von Stryk O. 2006. Efficient forward dynamics simulation and optimization of

human body dynamics. Journal of Applied Mathematics and Mechanics 86(10):828–840

DOI 10.1002/zamm.200610290.

Thelen DG, Anderson FC. 2006. Using computed muscle control to generate forward dynamic

simulations of human walking from experimental data. Journal of Biomechanics

39(6):1107–1115 DOI 10.1016/j.jbiomech.2005.02.010.

Umberger BR. 2010. Stance and swing phase costs in human walking. Journal of The Royal Society

Interface 7(50):1329–1340 DOI 10.1098/rsif.2010.0084.

Umberger BR, Caldwell GE. 2014. Musculoskeletal modeling. In: Robertson DGE, Caldwell GE,

Hamill J, Kamen G, Whittlesey SN, eds. Research Methods in Biomechanics. Champaign: Human

Kinetics, 247–276.

van den Bogert AJ, Blana D, Heinrich D. 2011. Implicit methods for efficient musculoskeletal

simulation and optimal control. Procedia IUTAM 2:297–316

DOI 10.1016/j.piutam.2011.04.027.

van den Bogert AJ, Hupperets M, Schlarb H, Krabbe B. 2012. Predictive musculoskeletal

simulation using optimal control: Effects of added limb mass on energy cost and kinematics of

walking and running. Journal of Sports Engineering and Technology 226(2):123–133

DOI 10.1177/1754337112440644.

Wächter A, Biegler LT. 2006. On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Mathematical Programming 106(1):25–57

DOI 10.1007/s10107-004-0559-y.

Lee and Umberger (2016), PeerJ, DOI 10.7717/peerj.1638 18/18

http://dx.doi.org/10.1098/rspb.2011.2015
http://dx.doi.org/10.1109/MCSE.2011.36
http://dx.doi.org/10.1016/S0021-9290(01)00105-1
http://dx.doi.org/10.1146/annurev.bioeng.3.1.245
http://dx.doi.org/10.1115/1.2894094
http://dx.doi.org/10.1080/10255842.2014.916698
http://dx.doi.org/10.1016/j.piutam.2011.04.021
http://dx.doi.org/10.1016/j.piutam.2011.04.023
http://dx.doi.org/10.1115/1.4026266
http://dx.doi.org/10.1002/zamm.200610290
http://dx.doi.org/10.1016/j.jbiomech.2005.02.010
http://dx.doi.org/10.1098/rsif.2010.0084
http://dx.doi.org/10.1016/j.piutam.2011.04.027
http://dx.doi.org/10.1177/1754337112440644
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.7717/peerj.1638
https://peerj.com/

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2016

	Generating Optimal Control Simulations of Musculoskeletal Movement using OpenSim and MATLAB
	Leng-Feng Lee
	Brian R. Umberger
	Recommended Citation

	Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References

