101 research outputs found

    Comparison of exhaled breath condensate pH using two commercially available devices in healthy controls, asthma and COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Analysis of exhaled breath condensate (EBC) is a non-invasive method for studying the acidity (pH) of airway secretions in patients with inflammatory lung diseases.</p> <p>Aim</p> <p>To assess the reproducibility of EBC pH for two commercially available devices (portable RTube and non-portable ECoScreen) in healthy controls, patients with asthma or COPD, and subjects suffering from an acute cold with lower-airway symptoms. In addition, we assessed the repeatability in healthy controls.</p> <p>Methods</p> <p>EBC was collected from 40 subjects (n = 10 in each of the above groups) using RTube and ECoScreen. EBC was collected from controls on two separate occasions within 5 days. pH in EBC was assessed after degasification with argon for 20 min.</p> <p>Results</p> <p>In controls, pH-measurements in EBC collected by RTube or ECoScreen showed no significant difference between devices (p = 0.754) or between days (repeatability coefficient RTube: 0.47; ECoScreen: 0.42) of collection. A comparison between EBC pH collected by the two devices in asthma, COPD and cold patients also showed good reproducibility. No differences in pH values were observed between controls (mean pH 8.27; RTube) and patients with COPD (pH 7.97) or asthma (pH 8.20), but lower values were found using both devices in patients with a cold (pH 7.56; RTube, p < 0.01; ECoScreen, p < 0.05).</p> <p>Conclusion</p> <p>We conclude that pH measurements in EBC collected by RTube and ECoScreen are repeatable and reproducible in healthy controls, and are reproducible and comparable in healthy controls, COPD and asthma patients, and subjects with a common cold.</p

    Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR<sup>-/-</sup>) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.</p> <p>Methods</p> <p>The wild type (WT) and AR<sup>-/- </sup>mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4<sup>+</sup>CD25<sup>+ </sup>T cells population.</p> <p>Results</p> <p>Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR<sup>-/- </sup>mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+</sup>) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.</p> <p>Conclusion</p> <p>Our results using AR<sup>-/- </sup>mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.</p

    An Anti-Human ICAM-1 Antibody Inhibits Rhinovirus-Induced Exacerbations of Lung Inflammation

    Get PDF
    Human rhinoviruses (HRV) cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11) that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo

    Effects of dog ownership in early childhood on immune development and atopic diseases

    Get PDF
    Summary Background Exposure to pets in childhood has been associated with a reduced risk of wheezing and atopy. Objective Our objective was to determine whether the effects of pet exposure on immune development and atopy in early childhood can be explained by alterations in exposure to innate immune stimuli in settled dust. Methods Two hundred and seventy-five children at increased risk of developing allergic diseases were evaluated to age 3 years for pet ownership, blood cell cytokine responses, and atopy. Can f 1, Fel d 1, endotoxin, ergosterol, and muramic acid were measured in settled dust from 101 homes. Results Dog exposure at birth was associated with decreased atopic dermatitis (AD) (12% vs. 27%; P = 0.004) and wheezing (19% vs. 36%; P = 0.005) in year 3. The rates of AD (23%) and wheezing (42%) in year 3 were relatively high in children who acquired dogs after birth. The prevalence of dog sensitization (10-12%) did not vary according to dog exposure. Can f 1 levels in bedroom dust were positively associated with IL-10 (r = 0.26; P = 0.01), IL-5 (r = 0.34, P o 0.001), and IL-13 (r = 0.28; P = 0.004) responses at age 1, and IL-5 (r = 0.24; P = 0.022) and IL-13 (r = 0.25; P = 0.015) responses at age 3. In contrast, endotoxin was associated with IFN-g (r = 0.31; P = 0.002) and IL-13 (r = 0.27; P = 0.01) responses at age 3 but not at age 1, and similar relationships were present for muramic acid. Adjustment for levels of innate immune stimuli in house dust did not significantly affect the relationships between Can f 1 and cytokine responses. Conclusions Exposure to dogs in infancy, and especially around the time of birth, is associated with changes in immune development and reductions in wheezing and atopy. These findings are not explained by exposure to endotoxin, ergosterol, or muramic acid

    Evolving Concepts in how Viruses Impact Asthma

    Get PDF
    Over the past decade, there have been substantial advances in our understanding about how viral infections regulate asthma. Important lessons have been learned from birth cohort studies examining viral infections and subsequent asthma and from understanding the relationships between host genetics and viral infections, the contributions of respiratory viral infections to patterns of immune development, the impact of environmental exposure on the severity of viral infections, and how the viral genome influences host immune responses to viral infections. Further, there has been major progress in our knowledge about how bacteria regulate host immune responses in asthma pathogenesis. In this article, we also examine the dynamics of bacterial colonization of the respiratory tract during viral upper respiratory tract infection, in addition to the relationship of the gut and respiratory microbiomes with respiratory viral infections. Finally, we focus on potential interventions that could decrease virus-induced wheezing and asthma. There are emerging therapeutic options to decrease the severity of wheezing exacerbations caused by respiratory viral infections. Primary prevention is a major goal, and a strategy toward this end is considered

    Respiratory Infections Precede Adult-Onset Asthma

    Get PDF
    BACKGROUND: Respiratory infections in early life are associated with an increased risk of developing asthma but there is little evidence on the role of infections for onset of asthma in adults. The objective of this study was to assess the relation of the occurrence of respiratory infections in the past 12 months to adult-onset asthma in a population-based incident case-control study of adults 21-63 years of age. METHODS/PRINCIPAL FINDINGS: We recruited all new clinically diagnosed cases of asthma (nβ€Š=β€Š521) during a 2.5-year study period and randomly selected controls (nβ€Š=β€Š932) in a geographically defined area in South Finland. Information on respiratory infections was collected by a self-administered questionnaire. The diagnosis of asthma was based on symptoms and reversible airflow obstruction in lung function measurements. The risk of asthma onset was strongly increased in subjects who had experienced in the preceding 12 months lower respiratory tract infections (including acute bronchitis and pneumonia) with an adjusted odds ratio (OR) 7.18 (95% confidence interval [CI] 5.16-9.99), or upper respiratory tract infections (including common cold, sinusitis, tonsillitis, and otitis media) with an adjusted OR 2.26 (95% CI 1.72-2.97). Individuals with personal atopy and/or parental atopy were more susceptible to the effects of respiratory infections on asthma onset than non-atopic persons. CONCLUSIONS/SIGNIFICANCE: This study provides new evidence that recently experienced respiratory infections are a strong determinant for adult-onset asthma. Reducing such infections might prevent onset of asthma in adulthood, especially in individuals with atopy or hereditary propensity to it

    A Diverse Group of Previously Unrecognized Human Rhinoviruses Are Common Causes of Respiratory Illnesses in Infants

    Get PDF
    Human rhinoviruses (HRVs) are the most prevalent human pathogens, and consist of 101 serotypes that are classified into groups A and B according to sequence variations. HRV infections cause a wide spectrum of clinical outcomes ranging from asymptomatic infection to severe lower respiratory symptoms. Defining the role of specific strains in various HRV illnesses has been difficult because traditional serology, which requires viral culture and neutralization tests using 101 serotype-specific antisera, is insensitive and laborious.To directly type HRVs in nasal secretions of infants with frequent respiratory illnesses, we developed a sensitive molecular typing assay based on phylogenetic comparisons of a 260-bp variable sequence in the 5' noncoding region with homologous sequences of the 101 known serotypes. Nasal samples from 26 infants were first tested with a multiplex PCR assay for respiratory viruses, and HRV was the most common virus found (108 of 181 samples). Typing was completed for 101 samples and 103 HRVs were identified. Surprisingly, 54 (52.4%) HRVs did not match any of the known serotypes and had 12-35% nucleotide divergence from the nearest reference HRVs. Of these novel viruses, 9 strains (17 HRVs) segregated from HRVA, HRVB and human enterovirus into a distinct genetic group ("C"). None of these new strains could be cultured in traditional cell lines.By molecular analysis, over 50% of HRV detected in sick infants were previously unrecognized strains, including 9 strains that may represent a new HRV group. These findings indicate that the number of HRV strains is considerably larger than the 101 serotypes identified with traditional diagnostic techniques, and provide evidence of a new HRV group

    Lower Respiratory Tract Infection Induced by a Genetically Modified Picornavirus in Its Natural Murine Host

    Get PDF
    Infections with the picornavirus, human rhinovirus (HRV), are a major cause of wheezing illnesses and asthma exacerbations. In developing a murine model of picornaviral airway infection, we noted the absence of murine rhinoviruses and that mice are not natural hosts for HRV. The picornavirus, mengovirus, induces lethal systemic infections in its natural murine hosts, but small genetic differences can profoundly affect picornaviral tropism and virulence. We demonstrate that inhalation of a genetically attenuated mengovirus, vMC0, induces lower respiratory tract infections in mice. After intranasal vMC0 inoculation, lung viral titers increased, peaking at 24 h postinoculation with viral shedding persisting for 5 days, whereas HRV-A01a lung viral titers decreased and were undetectable 24 h after intranasal inoculation. Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, induced an acute respiratory illness, with body weight loss and lower airway inflammation, characterized by increased numbers of airway neutrophils and lymphocytes and elevated pulmonary expression of neutrophil chemoattractant CXCR2 ligands (CXCL1, CXCL2, CXCL5) and interleukin-17A. Mice inoculated with vMC0, compared with those inoculated with vehicle or UV-inactivated vMC0, exhibited increased pulmonary expression of interferon (IFN-Ξ±, IFN-Ξ², IFN-Ξ»), viral RNA sensors [toll-like receptor (TLR)3, TLR7, nucleotide-binding oligomerization domain containing 2 (NOD2)], and chemokines associated with HRV infection in humans (CXCL10, CCL2). Inhalation of vMC0, but not vehicle or UV-inactivated vMC0, was accompanied by increased airway fluid myeloperoxidase levels, an indicator of neutrophil activation, increased MUC5B gene expression, and lung edema, a sign of infection-related lung injury. Consistent with experimental HRV inoculations of nonallergic, nonasthmatic human subjects, there were no effects on airway hyperresponsiveness after inhalation of vMC0 by healthy mice. This novel murine model of picornaviral airway infection and inflammation should be useful for defining mechanisms of HRV pathogenesis in humans

    Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation

    Get PDF
    Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations

    Budesonide and Formoterol Reduce Early Innate Anti-Viral Immune Responses In Vitro

    Get PDF
    Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10βˆ’6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNΞ± and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2β€², 5β€² oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined
    • …
    corecore