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Abstract 87 
 88 

Over the last decade, there have been substantial advances in our understanding about how 89 

viral infections regulate asthma (Table 1).  Important lessons have been learned from birth 90 

cohort studies examining viral infections and subsequent asthma, understanding the 91 

relationships between host genetics and viral infections, the contributions of respiratory viral 92 

infections to patterns of immune development, the impact of environmental exposure on severity 93 

of viral infections, and how the viral genome influences host immune responses to viral 94 

infections.  Further, there has been major progress in our knowledge about how bacteria 95 

regulate host immune responses in asthma pathogenesis.  In this article, we also examine the 96 

dynamics of respiratory tract bacterial colonization during viral upper respiratory tract infection, 97 

in addition to the relationship of the gut and respiratory microbiomes with respiratory viral 98 

infections.  Finally, we focus on potential interventions that could decrease virus-induced 99 

wheezing and asthma.  There are emerging therapeutic options to decrease severity of 100 

wheezing exacerbations caused by respiratory viral infections.  Primary prevention is a major 101 

goal and a strategy toward this end is considered. 102 

 103 
Key words: virus, asthma, genetics, immune, microbiome 104 
 105 
Abbreviations: 106 
Respiratory syncytial virus (RSV) 107 
Rhinovirus (RV)  108 
Airway responsiveness (AR)  109 
Fusion (F)  110 
Type 2 (Th2)  111 
Cadherin-related family member 3 (CDHR3)  112 
Genome wide association study (GWAS)  113 
Environmental tobacco smoke (ETS) 114 
Upper respiratory tract infection (URI) 115 
Short chain fatty acids (SCFA)  116 
Forced expiratory volume in 0.5 s (FEV0.5)  117 
Wheezing lower respiratory tract illness (WLRI)  118 
Inhaled corticosteroids (ICS) 119 
Long acting beta agonists (LABA) 120 
Lower respiratory tract illness (LRTI)  121 
Plasmacytoid dendritic cells (pDC)  122 



 123 
Introduction 124 

 125 

Over the last decade, there have been substantial advances in our understanding about how 126 

viral infections regulate asthma (Table 1).  Important lessons have been learned from birth 127 

cohort studies examining viral infections and subsequent asthma, understanding the 128 

relationships between host genetics and viral infections, the contributions of respiratory viral 129 

infections to patterns of immune development, the impact of environmental exposure on severity 130 

of viral infections, and how the viral genome influences host immune responses to viral 131 

infections.  Further, there has been major progress in our knowledge about how bacteria 132 

regulate host immune responses in asthma pathogenesis.  In this article, we also examine the 133 

dynamics of respiratory tract bacterial colonization during viral upper respiratory tract infection, 134 

in addition to the relationship of the gut and respiratory microbiomes with respiratory viral 135 

infections.  Finally, we focus on potential interventions that could decrease virus-induced 136 

wheezing and asthma.  There are emerging therapeutic options to decrease severity of 137 

wheezing exacerbations caused by respiratory viral infections.  Primary prevention is a major 138 

goal and a strategy toward this end is considered. 139 

  140 



The viral genome and how it influences host immune responses to viral infections 141 

Respiratory syncytial virus (RSV) and rhinovirus (RV) are important causes of wheezing 142 

in early life and wheezing illness with these viruses have been associated with increased 143 

asthma risk later in childhood.  At age 6, there is an increased risk of asthma if children had 144 

wheezing illness with RSV (odds ratio 2.6), RV (odds ratio 9.8), or both RSV and RV (odds ratio 145 

10.0) in the first 3 years of life.  RSV is a negative-sense, single stranded RNA virus that is a 146 

member of the Paramyxoviridae family and is the leading cause of hospitalization each year in 147 

the United States in children under 1 year of age.1 There are three species of RV in the 148 

enterovirus genus, and all are positive-sense, single-stranded RNA viruses that have protein 149 

capsids. RV are the most frequently detected viruses in wheezing children over the age of 1 150 

year, and from children and adults with acute exacerbations of asthma. 151 

The clinical manifestations of a viral infection in the respiratory tract result from a 152 

complex interplay of the host, environment, and virus.  To make comparisons between different 153 

immune responses elicited by diverse viruses, host and the environmental conditions must be 154 

held constant in order to prevent the introduction of confounding factors.  This requires artificial 155 

conditions, such as the use of human cell lines for in vitro infection studies, the infection of 156 

genetically identical animals, such as mice, housed in the same environment, and the use of a 157 

standard viral inoculum.  Determining the effect of specific genes within a virus requires that all 158 

other viral genes are identical.  Such studies have begun but are still relatively new.     159 

Experiments in models of RSV genomes have provided important insights into how the 160 

viral genome influences host immune responses to infection.  Three RSV strains commonly 161 

used in pathogenesis studies are A2, line 19, and Long.  RSV A2 infection in BALB/c mice 162 

resulted in a predominant IFN-γ immune response, no production of the Th2 cytokine IL-13 in 163 

the lung, an absence of airway mucus, and no airway responsiveness (AR) to methacholine.2  164 

Infection with RSV Long similarly did not result in host IL-13 production in the lung nor was there 165 

airway mucus.3  However, line 19 infection in genetically identical mice in the same environment 166 



caused the host immune response to produce IL-13, decreased IFN-γ compared to A2 infection, 167 

airway mucus, and heightened AR.2    Sequencing of the A2, line 19, RSV Long strains revealed 168 

six amino acid differences between line 19 and the A2 and Long strains, of which 5 amino acid 169 

differences were in the fusion (F) protein.3  To determine the contribution of the F gene of each 170 

virus to disease pathogenesis, a reverse genetics approach was undertaken by creating 171 

chimeric viruses whereby an A2 virus was manipulated to replace the A2 F gene with either the 172 

F gene of either line 19 or Long.  Infection with the chimeric virus containing the line 19 F gene 173 

caused decreased host IFN-α lung levels, higher viral load in the lungs, greater lung IL-13 174 

protein, augmented airway mucus, and increased AR, compared to the chimeric viruses 175 

containing either A2 or Long F proteins.3  Therefore, this reverse genetic approach provided the 176 

opportunity to not only discover which genes in RSV line 19 strain were responsible for the lung 177 

IL-13, airway mucus, and AR, but also the identification of the specific amino acids that caused 178 

airway remodeling.  These techniques not only provide the knowledge of unique components of 179 

the viral genome that contribute to specific pathogenic features but may also assist in vaccine 180 

and therapeutic strategies aimed at the proteins responsible for specific disease characteristics. 181 

Future perspectives: To date, there have not been studies that reveal a relationship between 182 

RSV genotypes and the presence of wheezing in hospitalized children with bronchiolitis or 183 

bronchopneumonia; however, this may be a function of the lack of application of technology to 184 

sequence strains because of cost.  Studies relating viral genetics to severity of illness in mice 185 

have demonstrated the intricate interactions between viral genome, viral proteins, host cell 186 

function and metabolism and immune response. Developing a greater understanding of this 187 

chain of events could highlight several therapeutic opportunities, including identification of high-188 

priority pathogens, inhibition of viral or host proteins that are critical for replication, and 189 

strategies to inhibit virus-induced skewing of immune responses that favors viral replication over 190 

host defense. 191 

 192 



Host genetics and viral respiratory infections 193 

 A number of studies have begun to shed light on the relationships among host genetics, 194 

viral infections and acute and long-term respiratory outcomes.  Candidate gene approaches 195 

have been utilized to identify associations between genetic polymorphisms and viral respiratory 196 

illness outcomes. Polymorphisms in several antiviral and innate immune genes have been 197 

linked to susceptibility to respiratory viruses, infection severity, and virus-induced asthma 198 

exacerbations, and have been replicated across multiple cohorts (Table 2). These genes 199 

include STAT4, JAK2, MX1, VDR, DDX58, and EIF2AK2.4 Additionally, whole exome 200 

sequencing has been utilized to identify rare variants in innate immune responses linked to 201 

severe respiratory viral infections. Autosomal recessive IRF7 deficiency has been observed in 202 

one patient in association with severe influenza infection and acts through impairment of 203 

interferon amplification.5 Dominant negative loss-of-function variants in IFIH1, critical to viral 204 

RNA sensing, have been shown to be a risk for intensive care unit hospitalization due to viral 205 

infections in previously healthy children.6 206 

A number of polymorphisms have been specifically associated with increased severity of 207 

illnesses associated with hospitalization from RSV infection. A candidate gene approach 208 

identified SNPs in the innate immune genes VDR, IFNA5, and NOS2 as risk factors for RSV 209 

bronchiolitis.7 In order to further elucidate associations of host genetics with RSV illness severity 210 

and asthma risk, a recent review examined overlap amongst genes associated with both 211 

outcomes. This approach identified a number of genes involved with both innate immunity and 212 

type 2 (Th2) inflammatory responses (ADAM33, IL4R, CD14, TNF, IL13 and IL1RL1) that are 213 

highly relevant to these outcomes.8  214 

The most replicated association between host genetics and asthma risk is the 17q21 215 

locus. In two birth cohort studies, variants in this locus, including ORMDL3 and GSDMB, were 216 

also associated with increased risk of wheezing with RV infections in early life.9 Interestingly, 217 

these variants were only associated with increased risk of subsequent asthma in children who 218 



developed RV wheezing in the first 3 years of life. In contrast, early life RSV wheezing was not 219 

linked to 17q21 variants in these cohorts. In addition, farm exposures10 and pets11 in the home 220 

lessen the risk of asthma for children with high-risk 17q21 genotypes. In each case, the genetic 221 

risk associated with 17q21 was buffered by protective environmental exposures. 222 

RV virulence varies by species; RV-A and RV-C are more likely to cause illnesses, 223 

wheezing and lower respiratory tract infection compared to RV-B,12 which has a slower rate of 224 

replication and induces muted cytokine and chemokine responses.13 Whether there are 225 

individual types within RV species that are more virulent is unknown, and difficult to study given 226 

the genetic diversity of these viruses and high mutation rate.  A functional polymorphism in 227 

cadherin-related family member 3 (CDHR3) has been associated by genome wide association 228 

study (GWAS) with early childhood asthma and severe wheezing episodes.14 Interestingly, 229 

CDHR3 is a receptor that enables binding and replication of RV-C, suggesting that this link 230 

between CDHR3 and asthma risk may be mediated by RV-C infections.15 In support of this 231 

hypothesis, children with the risk polymorphism in CDHR3 were recently found to have greater 232 

risk of RV-C illnesses, but not illnesses associated with other viruses.16 233 

Future perspectives: These genetic associations among respiratory virus susceptibility, infection 234 

severity and subsequent asthma risk may prove to be important to risk stratify populations, and 235 

potentially provide new therapeutic targets for reducing illness severity and subsequent risk. 236 

Further, unbiased approaches have been employed recently to identify pathways of gene 237 

expression in the upper airway that differentiate a viral cold that resolves from one that leads to 238 

an asthma exacerbation.1  Efforts are ongoing to understand how these gene expression 239 

patterns are regulated in hopes of identifying new personalized therapeutic strategies to prevent 240 

asthma exacerbation. The integration of multiple “omics” approaches holds promise to provide 241 

the ability to unravel these complex relationships. 242 

 243 

Environmental factors affecting the inception and severity of asthma exacerbations 244 



The exposome, defined as the measure of all exposures that influence the health of an 245 

individual, is an important determinant of asthma risk during the lifespan of an individual.17 Early 246 

exposures can set in motion pathways that will ultimately define illnesses and symptom 247 

exacerbations, which is especially true when considering the ontogeny of asthma.  From birth 248 

through school years, children are frequently exposed to a variety of respiratory pathogens, 249 

allergens, microbes and airway irritants.  The pathogenic or beneficial effects of these 250 

exposures and their interactions remain the focus of research to develop new interventions and 251 

preventive therapies.  252 

Most of the initial research devoted to the ontogeny of asthma focused on RSV infections 253 

which are frequently detected by culture and tests for RSV antigen in nasal washes from 254 

wheezing infants during the mid-winter months. Studies in the past reported that flares of 255 

wheezing caused by RSV leading to hospitalization during infancy increased the risk for 256 

developing asthma and allergy.18, 19 However, recent studies indicate that the more severe 257 

episodes (i.e., those requiring hospitalization) of infantile wheezing caused by RSV increase the 258 

risk for subsequent wheeze in infants and toddlers, but it is less certain whether RSV-induced 259 

wheeze influences the development of atopy or asthma as children grow older.20  260 

In contrast, flares of wheezing caused by RV are more strongly linked to persistent 261 

wheezing and the development of asthma, especially in children who are sensitized to allergens 262 

at an early age.21-23 In keeping with this, the dominant risk factors for asthma attacks that require 263 

hospital care among children after 3 years of age is the combination of allergic airway 264 

inflammation and RV infection.24-26 As a result, several host factors should be considered in 265 

efforts to treat asthma exacerbations more effectively and to reduce the risk for asthma 266 

development, For example:  267 

1) There may be phenotypes of asthmatic children who would benefit from development of 268 

vaccines to RV or RSV. For example, genetic variations at the 17q21 locus and a coding 269 



SNP in CDHR3 (the receptor for RV-C genotypes) increase the risk for wheezing with 270 

RV during childhood.9, 14  271 

2) There is current interest in whether the administration of a biologic such as omalizumab 272 

(anti-IgE antibody) during early childhood will have a disease modifying effect after this 273 

intervention is discontinued (i.e., the Preventing Asthma in High Risk Kids (PARK) trial; 274 

NCT02570984). 275 

3) There is evidence that the asthmatic airway, especially epithelial cells and innate 276 

lymphoid cells, has a Type 2 bias with enhanced production of TSLP, IL-13, and IL-25 in 277 

parallel with decreased type I and III IFN responses that are needed for effective anti-278 

viral killing and clearance.27-34 This bias may increase the susceptibility of allergic 279 

asthmatics to RV infections.  Once infected, however, in vivo studies have shown that 280 

during RV infections viral loads and clearance are similar among children and young 281 

adults with asthma compared to non-allergic individuals without asthma.31 At present, 282 

mechanisms to explain these differences are poorly understood. A better understanding 283 

is likely to come from research focused on the cascade of early, innate cellular and 284 

molecular events that follow RV infection of epithelial cells. 285 

Future perspectives: Airway inflammation caused by recurrent infections (predominantly with 286 

RV) in the allergic host will continue to be the focus of research designed to develop new 287 

therapies to help children and young adults with asthma. Whether treatments targeting allergic 288 

inflammation will be sufficient to reduce the frequency and severity of exacerbations (e.g., using 289 

new monoclonal antibody-based biologics), or whether additional therapeutics will be needed to 290 

decrease the frequency of RV infections, or enhance viral killing, remains to be determined. 291 

Looking to the future, the evaluation of other interventions such as the administration of 292 

antibiotics to treat secondary bacterial pathogens, or azithromycin to reduce wheezing following 293 

virus infection also deserve further study, along with investigations to determine whether the 294 

administration of vitamin D, probiotics, and dietary modifications (e.g., fish oil) will have benefits. 295 



In contrast, the adverse effects of airway irritants such as environmental tobacco smoke (ETS) 296 

and air pollution (e.g., diesel fuel) on the severity and persistence of RV-induced asthma remain 297 

poorly understood. 298 

 299 

Effects of respiratory viral infections on patterns of immune development 300 

Acute wheezing illnesses with respiratory tract viruses in infancy and early childhood 301 

represent an important risk factor for childhood recurrent wheezing and later asthma 302 

development. This link is particularly well-established with RV and RSV, suggesting that these 303 

viruses may have a causative role, and significant research is directed towards understanding 304 

how these viruses can alter immune development to contribute to asthma pathogenesis. That 305 

said, causation remains unproven and asthma prevention strategies targeting viral illnesses do 306 

not currently exist. 307 

RV-associated wheezing, in particular, is associated with a higher asthma risk than other 308 

viruses; this has been consistently demonstrated across multiple studies.21, 23, 35-38 Many of 309 

these studies have linked RV-induced wheezing with other asthma risk factors, in particular 310 

markers of atopy including allergic sensitization, increased eosinophils, and atopic eczema, 311 

suggesting possible additive or synergistic effects in increasing asthma risk. Experimental 312 

models have demonstrated alterations in type-2 immune responses to RV that may account for 313 

this risk (Figure 1). Mouse models have demonstrated that neonatal RV (RV1B) infection results 314 

in persistent airway hyperresponsiveness, mucous cell metaplasia, and IL-13 production that 315 

does not occur in adult mice. Furthermore, knockout of IL4R prevents this response, consistent 316 

with an IL13-dependent process.39 Subsequent work demonstrated that RV infection leads to 317 

expression of epithelial derived cytokines IL-25, IL-33, and TSLP and an increase in ILC2s as 318 

an important source of airway IL-13; blocking these pathways with anti-IL-25 attenuates 319 

neonatal RV-induced AHR and mucous cell metaplasia.40, 41 While there is no equivalent human 320 



evidence regarding the immune effects of RV in early life, these same pathways are known to 321 

play a key role in the response to RV leading to exacerbations in established asthma.29  322 

A key question however, is whether underlying Th2 inflammation or RV associated 323 

wheezing comes first. A prospective birth cohort analysis has shown that allergic sensitization 324 

generally precedes RV wheezing but not the other way around, suggesting allergic sensitization 325 

may lead to more severe RV illnesses and the development of asthma.42 Supporting this 326 

observation, in vitro studies have shown that Th2 inflammation can inhibit type I and III 327 

interferon antiviral responses to RV infections,43, 44 which may increase susceptibility to more 328 

severe RV infections. However in contrast, several human studies have demonstrated 329 

increased IFN signatures in asthmatic children with virus infections, as well as in severe asthma 330 

in adults;45-47 these might represent different disease states, as a recent report found that early 331 

life exacerbation-prone asthma was correlated with low IFN signatures, while the highest IFN 332 

signatures were associated with later-onset asthma.48 333 

Allergy is a major risk factor for the progression from wheezing illnesses to asthma, and 334 

this has been a very consistent finding across multiple cohorts.21, 49, 50 Allergic sensitization 335 

precedes wheezing illnesses in most young children,42 and allergic inflammation can impair 336 

antiviral responses in vitro51 and in vivo.52 This suggests that allergic airway inflammation can 337 

increase susceptibility to and severity of viral respiratory illnesses. Allergic sensitization in early 338 

childhood may also modify the relationship between microbial colonization and respiratory 339 

outcomes. In preschool children whose airways were colonized with pathogen-dominated 340 

microbiomes, sensitized children were at increased risk for chronic asthma while non-sensitized 341 

children were likely to have transient wheeze that resolved by age 4 years.53 342 

It is well established that hospitalization for RSV bronchiolitis in the first year of life is 343 

associated with later development of asthma.38, 54-56 RSV induces a broad innate immune 344 

response in infants including systemic interferon, neutrophil, and inflammatory pathways, and 345 

distinct RSV strains and concomitant airway bacteria can influence the severity of infection.57, 58 346 



The risk for more severe RSV-illnesses has also been linked to polymorphisms in several 347 

immune regulatory genes,59 many of which also can influence asthma risk. However, whether 348 

RSV is causal remains a subject of debate with two large cohort studies showing different 349 

conclusions,59, 60 one suggesting causation and the other an underlying genetic predisposition. 350 

Notably, two prevention studies using palivizumab (a monoclonal antibody directed against 351 

RSV) in high-risk infants found that prevention of more severe RSV-illnesses decreased the risk 352 

of childhood recurrent wheezing but not asthma development.61, 62 Ultimately RSV infection 353 

appears to have the greatest impact on asthma risk during a critical window of lung 354 

development for infants born during the fall (in the Northern hemisphere) who are at ~4 months 355 

of age during the peak of the winter RSV season. It has been well-established that RSV 356 

infection can induce pathologic Th2 immune responses, especially within the context of 357 

formalin-inactivated RSV vaccination.63-65 More recently, studies in mice have demonstrated the 358 

ability for RSV-related Pneumonia Virus of Mice as well as human RSV infection to break 359 

tolerance to allergens in neonatal mice.66 Furthermore, it is now appreciated that RSV triggers 360 

release of epithelial-derived cytokines that promote Th2 responses and can induce ILC2 361 

responses following infection.67, 68 These same epithelial cytokines have also been implicated in 362 

RV infection, perhaps suggesting a shared innate Th2-skewing mechanism during viral 363 

infection.27, 40 364 

Future perspectives: Fully understanding the patterns of immune development that lead to 365 

asthma inception, and how such patterns are affected by exogeneous exposures including viral 366 

infections, will direct asthma prevention research. Ongoing studies are focused on altering Th2-367 

skewing in early life including through blocking IgE and through altering microbial exposures. If 368 

effective, decreasing Th2-inflammation in early life may function in part through enhancing 369 

antiviral responses.51, 69  However, antiviral specific therapies including RV and RSV vaccines, 370 

may also prove to be critical in asthma prevention.  371 

 372 



Dynamics of respiratory tract bacterial colonization during viral upper respiratory tract 373 

infection 374 

Detection of viruses in the upper airway during peak viral seasons can be as high as 375 

90% in prospective studies.70 However, rates of illness are significantly lower, leading 376 

researchers to question why some patients are more susceptible to increased morbidity when 377 

they have a viral upper respiratory tract infection (URI).  One factor that has been shown to 378 

increase upper and lower airway symptoms during viral infections are bacteria.71  379 

These bacteria collectively constitute the microbiota. The upper airway microbiota 380 

develops over the first year of life with alterations in the natural development associated with 381 

increased risk for URIs during the first few years of life.72, 73  The most abundant bacteria within 382 

the upper airway of infants and children are Staphylococcus, Streptococcus, Moraxella, 383 

Haemophilus, Dolosigranulum, and Corynebacterium.71, 72, 74-78   384 

In several infant cross-sectional and cohort studies, the presence of Streptococcus, 385 

Moraxella, or Haemophilus during upper respiratory infection increases the likelihood that the 386 

infant will have lower airway symptoms.72, 76 Studies examining airway bacteria during RSV 387 

bronchiolitis have reported links between an increased abundance of Streptococcus9 and 388 

Haemophilus.78 In contrast, RV-bronchiolitis is associated with an increased abundance of 389 

Moraxella and Haemophilus.9 While these studies suggest that a bacteria-virus interaction 390 

occurs during infancy, only a few studies have examined the association between virus and 391 

bacteria in school-age children. One such study revealed that children with Streptococcus or 392 

Moraxella present in their airway are more likely to have cold and asthma symptoms during a 393 

naturally occurring RV infection.71 Collectively, these studies demonstrate that an association 394 

exists between specific bacteria and illness severity.  395 

While Streptococcus, Moraxella and Haemophilus are often associated with an increase 396 

in viral-associated symptoms, a higher abundance of Corynebacterium, Staphylococcus and 397 

Dolosigranulum is often present in the airway in the absence of viral detection and clinical 398 



symptoms.75, 77, 78 In addition, when the latter three bacteria are enriched in the upper airway, 399 

infants are less likely to have an acute respiratory illness,72 and school-age children are less 400 

likely to have a symptomatic illness during RV infection.75 Furthermore, high abundance of 401 

Lactobacillus in the upper airway during RSV illness is associated with a decreased risk of 402 

childhood wheeze,77 suggesting that bacteria present in the airway during viral illnesses may 403 

contribute to both illness severity and long term sequela. 404 

Future perspectives: Because most studies examining airway bacteria during viral infection 405 

have been cross-sectional, observational studies, it remains unclear how airway microbes affect 406 

the epithelium, and whether these interactions contribute to the causation of wheezing illnesses, 407 

asthma development in young children, and exacerbations of established asthma. Greater 408 

insight is needed into metabolic, immunologic and toxic effects of bacteria on epithelial cells that 409 

could contribute to acute illnesses and asthma risk. While many studies have examined 410 

changes in bacteria that occur during viral infection, few have examined how the airway 411 

microbiome influences susceptibility vs. resilience to viral infection. Some bacteria could 412 

promote a “pro-inflammatory” environment thereby making the airway susceptible to viral 413 

infection. The presence of H. influenzae in the infant airway prior to viral infection is associated 414 

with increased expression of local inflammatory cytokines suggesting a link between bacteria 415 

and airway inflammation.79 In contrast, mice receiving intranasal administration of Lactobacillus 416 

rhamnosus prior to viral infection have enhanced antiviral immune responses,80 suggesting that 417 

some bacteria protect the airway and reduce the risk of symptomatic viral infection. Greater 418 

understanding of these relationships may lead to new preventive approaches to acute viral-419 

bacterial illnesses and perhaps the development of childhood asthma.  420 

 421 

The influence of the gut microbiome on viral infections of the respiratory tract 422 

The gut microbiome represents the most abundant and diverse microbial environment in 423 

the human body, comprised of approximately 40 trillion bacteria.81  These bacteria have 424 



coevolved with humans over millennia to contribute to a symbiosis in which humans consume 425 

prebiotic fiber which is metabolized by resident microbes in the gut to create short chain fatty 426 

acids (SCFA) which in turn regulate immune responses.82, 83  Alterations in this relationship are 427 

occurring in modern times due to practices such as the frequent use of antibiotics, and the 428 

consumption of a high-sugar, low fiber diet.  As a consequence,  a state of microbial dysbiosis, 429 

or an ecological imbalance, may result, which leads to the loss of metabolic capabilities and 430 

predisposes infants to both the development of atopic diseases as well as an increased 431 

susceptibility to viral infections.84  432 

 Although epidemiologic evidence strongly supports a role of the gut microbiome in the 433 

development of asthma, the mechanisms remain unclear.85, 86   The most popular theory to 434 

explain these observations is that colonization with certain gut bacteria have a direct anti-435 

inflammatory effect on the respiratory tract decreasing the likelihood of airway hyperreactivity.87  436 

However, there is evidence that certain species of microbiota in the gastrointestinal tract prime 437 

the respiratory immune system to effectively fight viral pathogens.  Immunologic factors in early 438 

life such as low blood cell interferon responses88-91 and attenuated cytokine production92 have 439 

been associated with increased risk for wheezing in infancy. Furthermore, patterns of 440 

metabolites (which can regulate immune responses93) at birth are associated with the risk for 441 

wheezing illnesses.94 The idea that delayed immune maturation might contribute to wheezing is 442 

supported by studies showing that early life exposures to dogs,95, 96 farm life,10, 97 and increased 443 

microbes and allergens98 are inversely related to the risk of wheezing illnesses. Furthermore, 444 

exposure to these microbes and allergens during the prenatal period or infancy may be 445 

immunostimulatory.99, 100 A loss, therefore, of these resident microbes may then lead to a 446 

predisposition to viral infections and in turn, the development of asthma. 447 

Several studies have proposed mechanisms for the influence of the gut microbiota on 448 

both local and distant immune functions.  SCFA have been shown to have a local effect on 449 

immune responses through their influence on mucosal barrier function, and a loss of SCFA-450 



producing bacteria has been implicated in the development of food allergy.101  Recent advances 451 

have also shown that this symbiosis also influences vital immune responses in other systemic 452 

tissues.  For example, in the absence of SCFA, mucosal barrier function can break down and 453 

allow for translocation of gut pathobionts, bacteria that are symbiotic under normal conditions 454 

but pathogenic when removed from their normal environment, which, in turn, can drive 455 

autoimmunity.102  Similarly, in a murine model intact commensal bacteria in the gut were 456 

required for adaptive immune responses to respiratory influenza virus infection.  Specifically, 457 

when mice were treated with antibiotics, they had reduced virus-specific antibody titers, CD4+ 458 

T-cell responses, and cytokine secretion which consequently resulted in elevated viral titers post 459 

infection.  This impairment, however, was rescued by local or distal injection of Toll-like receptor 460 

ligands.103  Further, exposure to house dust from homes with dogs enriched the cecal 461 

microbiome in a murine model with L. johnsonii, which protected them against infection with 462 

RSV.104   463 

Future Perspectives: Although the pathways remain incomplete, evidence continues to mount 464 

that the gut microbiome can influence the maturation of the immune system in viral defense and 465 

therefore the development of asthma.105  Future therapies look to a role of probiotics for the 466 

prevention and treatment of allergic disorders, with recent evidence that atopy risk may be 467 

associated with a dysbiosis of the gut microbiome. Studies have shown that in asthma, MMP9 468 

(members of a family of enzymes that cleave extracellular matrix proteins) levels were 469 

significantly increased and treatment with the probiotic, L. rhamnosus GG (LCC), decreased 470 

MMP9 expression in lung tissue and inhibited inflammatory cell infiltration, as well as reducing 471 

exhaled nitric oxide among 4- to 7-year olds in pediatric asthma.106 472 

In early childhood, total fecal IgE levels appear to be specifically correlated with house dust 473 

mite-specific IgE levels, indicating that fecal IgE levels represent markers of allergic response to 474 

aeroallergens.  A significant correlation of fecal IgE levels with Dorea spp. and Clostridium spp. 475 

related to allergic rhinitis and asthma, respectively, suggest that modulation of particular subsets 476 



of gut microbial dysbiosis could contribute to the susceptibility to allergic airway diseases.107  477 

Future work is required for identification of specific species and functional studies to understand 478 

the strength and mechanism of these associations.  In the future, it is critical to understand more 479 

precisely the microbiota composition.  Optimized biomarker studies of the microbial taxa and the 480 

metabolites involved in asthma-associated dysbiosis could help identify infants at risk of asthma 481 

before symptoms.  This would also provide a scientific rationale for future therapeutic strategies 482 

aimed at restoring an altered infant gut microbiome. Future studies need to revolve around 483 

state-of-the-art methods for the evaluation of the microflora to better define indications, the 484 

probiotic strains and the type of prebiotic to be used. 485 

 486 

Potential for primary prevention: clinical trials aiming to prevent the development of the 487 

episodic wheeze phenotype 488 

The inception of childhood asthma is tightly related to early life events such as 489 

respiratory infections and the development of aeroallergens sensitization. Other co-factors (e.g., 490 

vitamin D) may modulate asthma inception pathways. Previous and on-going clinical trials, 491 

geared for asthma prevention, have targeted these pathways and co-factors. 492 

Early life respiratory infections are significant determinants of childhood asthma108. In 493 

young toddlers, prevention of severe RSV bronchiolitis may reduce the risk of episodic 494 

wheeze/asthma development 109, 110. In preterm infants (33-35 wks), palivizumab treatment 495 

during the RSV season resulted in a 73% reduction in the number of wheezing days during the 496 

first year of life, and outside of the RSV season109. A follow up study from the same cohort, 497 

revealed that at the age of 6 years the intervention resulted in a 41% relative risk reduction in 498 

parent-reported asthma, but the forced expiratory volume in 0.5 s (FEV0.5) percentage predicted 499 

values, which was an additional primary outcome, were similar between the palivizumab and 500 

placebo treated infants110. 501 



Since early life respiratory infections cannot be completely prevented, attenuation of the 502 

immune/inflammatory processes during these infections may be another pathway for asthma 503 

prevention. This concept is illustrated by the results of a proof-of concept clinical trial in 40 504 

infants hospitalized with RSV bronchiolitis. In this trial, azithromycin treatment for 2 weeks, 505 

during acute RSV bronchiolitis, reduced the likelihood of developing recurrent wheeze during 506 

the subsequent year111. Azithromycin effects were attributed to anti-inflammatory properties 507 

and/or its effects on the airway microbiome112. A larger confirmatory trial is ongoing (APW-RSV 508 

II; NCT02911935; Table 3). 509 

Based on observational studies that linked maternal vitamin D deficiency to childhood 510 

asthma, two clinical trials (VDAART113, COPSAC2010114) investigated whether maternal vitamin 511 

D supplementation (2400 IU/day113, 4000IU/day114) during pregnancy would prevent 512 

asthma/recurrent wheeze in their children. A recent meta-analysis that combined these two 513 

trials revealed that this intervention resulted in a 25% significant reduction in asthma/recurrent 514 

wheeze risk during the first 3 years of life 115. The effect was most profound among women with 515 

sufficient serum vitamin D levels at randomization highlighting the importance of normal pre-516 

conception vitamin D levels115. It was suggested that vitamin D beneficial effects may be related 517 

to enhancement of in-utero lung growth and development and promotion of antimicrobial effects, 518 

thereby reducing early life respiratory infections, and/or providing immune modulation effects 116. 519 

Omega-3 fatty acids were suggested to have anti-inflammatory effects, potentially due to 520 

decreased production of arachidonic acid metabolites. In a recent clinical trial, high dose 521 

Omega-3 fatty acids supplementation (2.4 g daily) to pregnant women, beginning at 24 week of 522 

gestation, resulted in a 30% relative risk reduction of persistent wheeze or asthma at age 3 523 

years117. These positive effects were driven by subgroups of children born to mothers with a 524 

variant of the gene encoding fatty acid desaturase, predisposing to low ability to produce 525 

omega-3 fatty acids, and by infants born to mothers with low omega-3 fatty acids baseline blood 526 

levels. These sub-group analyses suggest the plausibility of a precision-medicine approach of 527 



this potential future intervention. Nevertheless, it is important to assure that high dose omega-3 528 

fatty acids does not possess any safety issues, before omega-3 fatty acids may be utilized for 529 

asthma prevention. 530 

The ongoing ORBEX clinical trial (NCT02148796) is attempting to modulate the infant 531 

immune system by treating high-risk preschool children with Broncho-Vaxom® for 2 years to 532 

prevent/delay the development of wheezing lower respiratory tract illness (WLRI) during a third 533 

observation year.  Broncho-Vaxom® contains bacterial lysates and was previously shown to 534 

reduce the rate of respiratory infections118. Hence, it is postulated that prevention of early life 535 

WLRI will prevent the development of the recurrent wheeze phenotype.  Finally, the ongoing 536 

PARK clinical trial (NCT02570984) is targeting the association between allergic sensitization 537 

and asthma inception. PARK investigates whether treatment of high-risk preschool children with 538 

Omalizumab for 2-years would prevent asthma development, and whether the treatment would 539 

decrease asthma severity among infants who will develop asthma, during an additional 2-year 540 

observation period. 541 

Future perspectives: This is an exciting time for all involved in childhood asthma prevention: 542 

recent clinical trials have shown the feasibility of asthma prevention, and multiple clinical trials 543 

are ongoing toward this goal. In addition to targeting type 2 immune responses, new 544 

interventions are needed to inhibit viral replication, either with specific inhibitors or strategies to 545 

boost the development of global antiviral responses in the airways. Finally, studies in farming 546 

environments strongly suggest that environmental exposure can lower the risk of viral 547 

respiratory illness in addition to reducing allergy.10, 97 Identifying relevant mechanisms is likely to 548 

lead to new preventive approaches to virus-induced wheeze and asthma. 549 

 550 

New therapeutic options to decrease severity of asthma exacerbations caused by 551 

respiratory viral infection  552 



Recent studies have focused on short-term increases in standard asthma therapy, 553 

vitamin D supplementation, azithromycin and anti-IgE therapy.  However, mixed efficacy results 554 

limit the widespread application of many of these therapies in clinical practice. 555 

Maintenance inhaled corticosteroids (ICS) are effective in reducing the risk of asthma 556 

exacerbations and, when combined with inhaled long acting beta agonists (LABA), this 557 

decreases the risk further.  However, exacerbations continue to occur.  Attempts to increase 558 

dosing of inhaled steroid with early signs of loss of asthma control with viral infection, termed 559 

the “yellow zone”, to decrease exacerbation risk, have yielded mixed results. GINA guidelines 560 

suggest increasing ICS at onset of symptoms as part of a self-management plan 561 

(http://www.ginasthma.org). A Cochrane database review (including five studies in adults and 562 

three studies in children) concluded that current evidence does not support increasing ICS in 563 

mild to moderate asthma patients as part of a self-management plan to treat exacerbations.119 564 

A clinical trial examined this question further in 254 children aged 5-11 with history of 565 

mild to moderate persistent asthma with at least one previous exacerbation in the past year.120 566 

Children were treated for 48 weeks with low dose inhaled steroid and assigned to either 567 

continue this or quintuple the dose for 7 days at onset of loss of asthma control. There was no 568 

significant difference in the rate of severe exacerbations in the groups.  The total corticosteroid 569 

exposure in the high dose group was 16% higher (including both inhaled corticosteroid use and 570 

prednisone) and there was an effect on linear growth velocity between the high dose and low 571 

dose group (-0.23 cm/year), suggesting potential risk without identifiable benefit of the therapy.  572 

Vitamin D levels have been inversely associated with asthma severity, including 573 

hospitalization for severe infections.121  A large study aimed at optimizing low Vitamin D levels 574 

through supplementation did not reduce rates of colds or treatment failures in adults with 575 

asthma.122, 123 In contrast, a meta-analysis of seven randomized trials demonstrated a significant 576 

reduction in asthma exacerbations, with the effect seen only in patients with low vitamin D at 577 



baseline.124 There are ongoing studies in children with asthma examining the possible role of 578 

vitamin D supplementation in preventing asthma exacerbations (Table 3). 579 

Current guidelines do not recommend the use of antibiotic treatment for episodes of 580 

asthma-like symptoms in children, yet they are commonly used.  A randomized, double-blind, 581 

placebo-controlled trial conducted in the US, evaluated the role of early administration of 582 

azithromycin in prevention of progression to severe lower respiratory tract illness (LRTI) 583 

symptoms.125   Preschool children, age 12-71 months, with history of recurrent severe wheezing 584 

in the setting of LRTI, were randomized to azithromycin 12 mg/kg for 5 days (307 patients) or 585 

placebo (300 patients).  The medications were to be started as soon as the children developed 586 

signs or symptoms that typically preceded the development of a severe LRTI.  The primary 587 

outcome measure was the number of respiratory tract infections not progressing to a severe 588 

LRTI. The azithromycin group experienced a lower risk of progression to a severe LRTI than the 589 

placebo group.   590 

In the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010 591 

cohort), children (age 1-3) with recurrent asthma-like symptoms within this cohort were enrolled 592 

in a study to assess the duration of episodes when treated with azithromycin.126  With each 593 

episode of 3 days of consecutive symptoms (wheeze, cough, dyspnea), children were 594 

randomized to receive 10 mg/kg azithromycin or placebo for 3 days.  Seventy-two children from 595 

the recurrent asthma-like symptoms group had 158 episodes.  The azithromycin treatment 596 

shortened the days of symptoms, 3.4 days compared with 7.7 days after placebo, 597 

corresponding to a calculated reduction in episode length of 63.3%.  More improvement was 598 

seen when the treatment was started earlier in the episode; however, treatment did not 599 

significantly affect the time to next episode of troublesome lung symptoms in children. 600 

With these episodes, a hypopharyngeal aspirate was collected and cultured for common 601 

bacterial pathogens and a nasopharyngeal aspirate was collected for viral PCR.  Overall, the 602 

presence of any cultured pathogenic bacteria did not significantly alter the treatment effect 603 



compared to episodes without bacteria present; however, azithromycin was more effective in 604 

those whose culture grew H. influenzae.  The treatment effect in these studies is promising; 605 

however, resistance to these antibiotics and eliminating commensal microbes along with 606 

pathogens are concerns with repeated treatment.   607 

Birth cohort studies have shown allergic sensitization to be a risk factor for RV-induced 608 

wheeze.42  Additionally, in one prospective cohort study, the severity of RV-triggered asthma 609 

exacerbation increased as the degree of allergen sensitization increased, with serum IgE levels 610 

(total IgE and allergen specific IgE) increasing from baseline during the exacerbation.127  611 

Persistence of asthma by age 13 was most strongly associated with wheezing illness with RV 612 

and aeroallergen sensitization in early life37 suggesting a role for both viral infection and allergic 613 

sensitization in the development of asthma.   614 

A possible mechanism for impaired response to viral infections in allergic asthmatics is a 615 

decreased secretion of IFN in response to viral infection.  Purified plasmacytoid dendritic cells 616 

(pDC) from patients with allergic asthma were shown to secrete less IFN-α in response to 617 

exposure with influenza A virus.51  Increased FcεRIα expression and serum IgE levels were 618 

inversely associated with IFN- α secretion.  The increased susceptibility to viral wheeze in atopic 619 

patients and impaired antiviral response in these patients suggests a role for possible 620 

therapeutic intervention to decrease allergic inflammation with the goal of decreasing asthma 621 

exacerbations in response to viral infection.    622 

Omalizumab, a humanized monoclonal antibody that selectively binds to IgE, has 623 

recently been studied as an add-on therapy to prevent fall asthma exacerbations in atopic 624 

asthmatics in the Preventative Omalizumab or Step-Up Therapy for Fall Exacerbations 625 

(PROSE) study.128  The PROSE study included 478 children, age 6-17, with respiratory allergy 626 

and asthma, randomized to either inhaled corticosteroid boost, add on omalizumab or placebo.  627 

All patients had guidelines-based care in addition to the add-on treatment (ICS boost, 628 

omalizumab or placebo).  Treatment was begun 4-6 weeks before the participant’s school start 629 



day and ended 90 days after school start date.   Omalizumab treatment significantly decreased 630 

the odds of having at least 1 exacerbation, whereas boosting ICS did not reduce risk. 631 

Omalizumab increased IFN-α responses to RV ex vivo.  Within the omalizumab group, greater 632 

restoration of IFN-α responses were associated with fewer exacerbations.  In this trial, 633 

omalizumab was associated with a decreased frequency of RV illnesses, decreased duration of 634 

RV infection as well as decreased frequency of overall respiratory illness, and reduced peak RV 635 

shedding.52  Omalizumab reduced expression of FcεRIα on the surface of pDC and this 636 

reduction was associated with lower exacerbation rates and correlated with enhanced IFN-α 637 

production, suggestion a possible mechanism for the interaction between allergic sensitization 638 

and virus-induced asthma exacerbations.69  However, the connection between the pDC type I 639 

IFN production and asthma exacerbation will benefit from further study. 640 

In an observational study following children with asthma presenting with an acute 641 

asthma exacerbation triggered by RV, the use of omalizumab for at least 4 weeks prior to 642 

presentation was associated with reduced severity of exacerbation compared with patients 643 

primarily treated with ICS.129    This suggests a benefit in not only frequency and duration of 644 

asthma exacerbation, but also severity of exacerbation.  645 

Another possible mechanism for the interaction between allergic sensitization and virus-646 

induced asthma exacerbations is the presence of anti-viral IgE in response to infection.  In RSV 647 

infection in infants, RSV specific IgE was detected in nasopharyngeal secretions, with 648 

significantly higher titers in subjects with wheezing.130, 131 Correlation of the peak titers with 649 

degree of hypoxia was also noted.  Following known exposure to a specific laboratory strain, 650 

RV-specific IgE could be detected in human sera.132  While the IgE response to RV and RSV 651 

are associated with infection, the role of IgE in the host response to these infections is not fully 652 

understood.  Given the decreased exacerbations with use of omalizumab, further investigation 653 

into the role of anti-viral IgE is indicated.  654 



Future perspectives:  Given the morbidity of RSV and RV infections in patients with asthma, a 655 

consistent and effective treatment approach is highly desirable.  While studies have found 656 

possible benefits to treatment with azithromycin and omalizumab, the widespread use of these 657 

treatment approaches is not currently justified.  Further characterization of risk in this patient 658 

population and additional work to delineate the mechanisms by which these drugs are effective 659 

may lead to selection of patients most appropriate for these therapies.   660 

 661 

 662 

Conclusion 663 

 664 

There have been important advances in our knowledge of the relationship between viruses and 665 

asthma over the last decade.  Advances in scientific methods have provided innovative 666 

opportunities to examine host, environment, and viral interactions that either protect against or 667 

increase vulnerability to asthma development and exacerbations.  The exploration of the 668 

contribution of the respiratory and gut microbiome to virally-induced asthma is in its infancy and 669 

we suspect that over the next 5 years there will be major advances in this area.  Finally, primary 670 

prevention is a major goal to diminish the morbidity of virally-mediated wheezing, asthma and 671 

exacerbations.  Until primary prevention becomes a reality, clinical trials examining the impact of 672 

established medications, as well as novel therapies, will be critical to diminish the impact of viral 673 

infections on wheezing and asthma. 674 

  675 
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 1070 
Table 1. Review of most salient points 1071 
 1072 
1.  Polymorphisms in several antiviral and innate immune genes have been linked to 1073 
susceptibility to respiratory viruses, infection severity, and virus-induced asthma exacerbations, 1074 
and have been replicated across multiple cohorts; these genes include STAT4, JAK2, MX1, 1075 
VDR, DDX58, and EIF2AK2. 1076 
 1077 
2.  Rhinovirus virulence varies by species; RV-A and RV-C are more likely to cause illnesses, 1078 
wheezing and lower respiratory tract infection compared to RV-B. 1079 
 1080 
3.  RV infection leads to expression of epithelial derived cytokines IL-25, IL-33, and TSLP and 1081 
an increase in ILC2s as an important source of airway IL-13; blocking these pathways with anti-1082 
IL-25 attenuates neonatal RV-induced AHR and mucous cell metaplasia in mice. 1083 
 1084 
4.  Two prevention studies using palivizumab (a monoclonal antibody directed against RSV) in 1085 
high-risk infants found that prevention of more severe RSV-illnesses decreased the risk of 1086 
childhood recurrent wheezing but not asthma development. 1087 
 1088 
5.  In several infant cross-sectional and cohort studies, the presence of Streptococcus, 1089 
Moraxella, or Haemophilus during upper respiratory infection increases the likelihood that the 1090 
infant will have lower airway symptoms; studies examining airway bacteria during RSV 1091 
bronchiolitis have reported links between an increased abundance of Streptococcus and 1092 
Haemophilus, while in contrast, RV-bronchiolitis is associated with an increased abundance of 1093 
Moraxella and Haemophilus. 1094 
 1095 
6.  The presence of H. influenzae in the infant airway prior to viral infection is associated with 1096 
increased expression of local inflammatory cytokines suggesting that a link exists between 1097 
bacteria and airway inflammation; in contrast, mice receiving intranasal administration of 1098 
Lactobacillus rhamnosus prior to viral infection have an enhanced antiviral immune response80, 1099 
suggesting that some bacteria may protect the airway and help prevent viral infection. 1100 
 1101 
7.  The gut microbiome also regulate pulmonary anti-viral immunity; in a murine model intact 1102 
commensal bacteria in the gut were required for adaptive immune responses to respiratory 1103 
influenza virus infection. 1104 
 1105 
8.  Unique components of the viral genome contribute to respiratory illness and knowledge of 1106 
these factors may also assist in vaccine and therapeutic strategies aimed at the proteins 1107 
responsible for specific disease characteristics. 1108 
 1109 
9.  Omalizumab, a humanized monoclonal antibody that selectively binds to IgE, decreased fall 1110 

asthma exacerbations in atopic asthmatics and increased IFN-α responses to RV ex vivo in the 1111 
Preventative Omalizumab or Step-Up Therapy for Fall Exacerbations (PROSE) study, whereas 1112 
boosting ICS did not reduce risk.  1113 
 1114 
10.  A recent meta-analysis that combined two clinical trials (VDAART, COPSAC2010) 1115 
investigated whether maternal vitamin D supplementation (2400 IU/day, 4000IU/day) during 1116 
pregnancy revealed that this intervention resulted in a 25% significant reduction in 1117 
asthma/recurrent wheeze risk during the first 3 years of life. 1118 

 1119 



Table 3. Future/ongoing interventional studies examining treatments for viral triggered 1120 

asthma  1121 
  1122 

Study Title Study Population Intervention 

Primary 
Outcome 

Measurement 

Estimated 
Completion 

Date 

Vitamin D In the 
Prevention of Viral-
Induced Asthma in 
preschoolers 
 

 
children age 1-<6 with 
recurrent cold triggered 
asthma attacks, expected 
enrollment 865 subjects 
 

Baseline and 3.5 
month high dose 
vitamin D 100,000 
IU and daily Vitamin 
D dose 400 IU  
OR placebo 
 

Number of 
courses of 
rescue oral 
steroids (OCS) 
over 7 months 

December 
2022 
 
enrolling 

Azithromycin to Prevent 
Wheezing Following 
Severe RSV 
Bronchiolitis II 
 
 

children 1-18 months of 
age, hospitalized due to 
RSV bronchiolitis, 
expected enrollment 200 
subjects 
 

Azithromycin  
(10 mg/kg x 7 days 
followed by 5 mg/kg 
x 7days)  
OR placebo 
 

Time to 
occurrence of 
a 3rd episode 
of post-RSV 
wheezing, 
observation 
over 48 
months 

December 
2021 
 
not yet 
enrolling 



Figure 1. Immune responses to virus in the allergic asthmatic host. In the healthy host, anti-viral 1123 
IFN responses control and clear respiratory viral infections. In allergic asthmatics, the release of 1124 
the type 2-skewing cytokines TSLP, IL-25, and IL-33 promote the induction of Th2 cytokines 1125 
and the suppression of IFN responses, in addition to promoting airway hyperreactivity (AHR) 1126 
and increased mucus and IgE production. Furthermore, IgE has the capacity to suppress IFN-α 1127 
production by Plasmacytoid DCs (pDCs). 1128 
 1129 
 1130 
 1131 



Table 1. Review of most salient points 
 
1.  Polymorphisms in several antiviral and innate immune genes have been linked to 
susceptibility to respiratory viruses, infection severity, and virus-induced asthma exacerbations, 
and have been replicated across multiple cohorts; these genes include STAT4, JAK2, MX1, 
VDR, DDX58, and EIF2AK2. 
 
2.  Rhinovirus virulence varies by species; RV-A and RV-C are more likely to cause illnesses, 
wheezing and lower respiratory tract infection compared to RV-B. 
 
3.  RV infection leads to expression of epithelial derived cytokines IL-25, IL-33, and TSLP and 
an increase in ILC2s as an important source of airway IL-13; blocking these pathways with anti-
IL-25 attenuates neonatal RV-induced AHR and mucous cell metaplasia in mice. 
 
4.  Two prevention studies using palivizumab (a monoclonal antibody directed against RSV) in 
high-risk infants found that prevention of more severe RSV-illnesses decreased the risk of 
childhood recurrent wheezing but not asthma development. 
 
5.  In several infant cross-sectional and cohort studies, the presence of Streptococcus, 
Moraxella, or Haemophilus during upper respiratory infection increases the likelihood that the 
infant will have lower airway symptoms; studies examining airway bacteria during RSV 
bronchiolitis have reported links between an increased abundance of Streptococcus and 
Haemophilus, while in contrast, RV-bronchiolitis is associated with an increased abundance of 
Moraxella and Haemophilus. 
 
6.  The presence of H. influenzae in the infant airway prior to viral infection is associated with 
increased expression of local inflammatory cytokines suggesting that a link exists between 
bacteria and airway inflammation; in contrast, mice receiving intranasal administration of 
Lactobacillus rhamnosus prior to viral infection have an enhanced antiviral immune response80, 
suggesting that some bacteria may protect the airway and help prevent viral infection. 
 
7.  The gut microbiome also regulate pulmonary anti-viral immunity; in a murine model intact 
commensal bacteria in the gut were required for adaptive immune responses to respiratory 
influenza virus infection. 
 
8.  Unique components of the viral genome contribute to respiratory illness and knowledge of 
these factors may also assist in vaccine and therapeutic strategies aimed at the proteins 
responsible for specific disease characteristics. 
 
9.  Omalizumab, a humanized monoclonal antibody that selectively binds to IgE, decreased fall 
asthma exacerbations in atopic asthmatics and increased IFN-α responses to RV ex vivo in the 
Preventative Omalizumab or Step-Up Therapy for Fall Exacerbations (PROSE) study, whereas 
boosting ICS did not reduce risk.  
 
10.  A recent meta-analysis that combined two clinical trials (VDAART, COPSAC2010) 
investigated whether maternal vitamin D supplementation (2400 IU/day, 4000IU/day) during 
pregnancy revealed that this intervention resulted in a 25% significant reduction in 
asthma/recurrent wheeze risk during the first 3 years of life. 
 



Table 2.  Polymorphisms in several antiviral and innate immune genes have been linked to susceptibility to respiratory viruses, infection severity, 
and virus-induced asthma exacerbations, and have been replicated across multiple cohorts. 
 
Gene  Function 
STAT4   Transcription factor required for IL-12 signaling in the development of Th1 cells from naïve CD4 T cells 
JAK2  A non-receptor tyrosine kinase critical for signaling of the GM-CSF, gp130, and single chain receptor families. 
MX1  Responsible for the antiviral state against influenza infection 
VDR  Vitamin D receptor 
DDX58   Involved in antiviral signaling in response to viruses containing a dsDNA genome 
EIF2AK2 Innate antiviral immune response to viral infection that can trigger apoptosis via FADD-mediated caspase 8 
IRF7  Critical role in the innate immune response against DNA and RNA viruses 
IFIH1  Provides instructions for making the MDA5 protein that has a critical role in innate antiviral immunity 
IFNA5  One of the type I IFN-α isoforms that has antiviral activities 
NOS2  Nitric oxide synthase gene that mediates the antiviral activity of IFN-γ 
ADAM33 Member of the ADAM (a disintegrin and metalloprotease domain) family identified as a major susceptibility gene in asthma  
IL4R  Interleukin 4 receptor through which IL-4 and IL-13 signal to induce IgE class switching and airway mucus metaplasia 
CD14  Multiple functions, one of which is critical for TLR signaling in host defense 
TNF  Tumor necrosis factor that is produced in abundance by mast cells and has roles in cell survival and proliferation 
IL13  Important in airway mucous cell metaplasia, airways responsiveness, VCAM expression 
IL1RL1  One subunit of the receptor for IL-33, which can activate ILC2 and promote CD4 T cell differentiation toward Th2 phenotype 
CDHR3  Cadherin that is the receptor for rhinovirus 
 



Table 3. Future/ongoing interventional studies examining treatments for viral triggered 
asthma  
 

Study Title Study Population Intervention 

Primary 
Outcome 

Measurement 

Estimated 
Completion 

Date 

Vitamin D In the 
Prevention of Viral-
Induced Asthma in 
preschoolers 
 

 
children age 1-<6 with 
recurrent cold triggered 
asthma attacks, expected 
enrollment 865 subjects 
 

Baseline and 3.5 
month high dose 
vitamin D 100,000 
IU and daily Vitamin 
D dose 400 IU  
OR placebo 
 

Number of 
courses of 
rescue oral 
steroids (OCS) 
over 7 months 

December 
2022 
 
enrolling 

Azithromycin to Prevent 
Wheezing Following 
Severe RSV 
Bronchiolitis II 
 
 

children 1-18 months of 
age, hospitalized due to 
RSV bronchiolitis, 
expected enrollment 200 
subjects 
 

Azithromycin  
(10 mg/kg x 7 days 
followed by 5 mg/kg 
x 7days)  
OR placebo 
 

Time to 
occurrence of 
a 3rd episode 
of post-RSV 
wheezing, 
observation 
over 48 
months 

December 
2021 
 
not yet 
enrolling 




