81 research outputs found
Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados
El avance logrado durante las últimas décadas en los sistemas avanzados de asistencia a la conducción (ADAS, Advanced Driver Assistance System) ha posibilitado mejorar múltiples aspectos en los vehículos comerciales, como por ejemplo la seguridad, robustez de los sistemas, eficiencia energética, detección de peatones, aparcamiento asistido y ayudas a la navegación, entre otros. Algunos desarrollos, como el control lateral y la generación óptima de trayectorias en tiempo real, están en pleno desarrollo. En este trabajo se presenta una arquitectura dual-modular cuyas principales características son su capacidad para integrar y probar nuevos algoritmos de control y decisión (modular), y la posibilidad de llevar a cabo pruebas en entornos simulados y en plataformas reales (dual), reduciendo los tiempos y costes de desarrollo. Con esta arquitectura se han podido probar diferentes técnicas de control y de generación de trayectorias, realizando además simulaciones, y comparando los resultados obtenidos con un vehículo real.ECSEL ENABLE-S3 692455-
Towards Risk Estimation in Automated Vehicles Using Fuzzy Logic
As vehicles get increasingly automated, they need to properly evaluate different situations and assess threats at run-time. In this scenario automated vehicles should be able to evaluate risks regarding a dynamic environment in order to take proper decisions and modulate their driving behavior accordingly. In order to avoid collisions, in this work we propose a risk estimator based on fuzzy logic which accounts for risk indicators regarding (1) the state of the driver, (2) the behavior of other vehicles and (3) the weather conditions. A scenario with two vehicles in a car-following situation was analyzed, where the main concern is to avoid rear-end collisions. The goal of the presented approach is to effectively estimate critical states and properly assess risk, based on the indicators chosen.This work was supported by the AMASS project (H2020-
ECSEL) with grant agreement number 692474
Dual-modular architecture for developing and validation of decision and control modules for automated vehicles
[ES] El avance logrado durante las últimas décadas en los sistemas avanzados de asistencia a la conducción (ADAS, Advanced Driver Assistance System) ha posibilitado mejorar múltiples aspectos en los vehículos comerciales, como por ejemplo la seguridad, robustez de los sistemas, eficiencia energética, detección de peatones, aparcamiento asistido y ayudas a la navegación, entre otros. Algunos desarrollos, como el control lateral y la generación óptima de trayectorias en tiempo real, están en pleno desarrollo. En este trabajo se presenta una arquitectura dual-modular cuyas principales características son su capacidad para integrar y probar nuevos algoritmos de control y decisión (modular), y la posibilidad de llevar a cabo pruebas en entornos simulados y en plataformas reales (dual), reduciendo los tiempos y costes de desarrollo. Con esta arquitectura se han podido probar diferentes técnicas de control y de generación de trayectorias, realizando además simulaciones, y comparando los resultados[EN] In last decades, the advances done in the Advanced Driver Assistance System (ADAS) have improved multiple aspects in the vehicles, as: safety, system robustness, power eciency, pedestrian detection and road lanes, assisted parking, navigation, etc. In the other hand, lateral control and generation of optimal trajectories in real time, are under development. In this work, we present a dual modular architecture. Its principal characteristics are the capacity of integrate and test new control algorithms, and the possibility of making tests with the simulation environment and the real platform (dual), reducing the development time. This architecture has been used to test dierent techniques for control and trajectory generation. Furthermore, the simulations have been done with a high level of precision comparing them with a real vehicle.Proyecto ECSEL ENABLE-S3, número 692455-2Lattarulo, R.; Matute, J.; Pérez, J.; Gomez Garay, V. (2020). Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados. Revista Iberoamericana de Automática e Informática industrial. 17(1):66-75. https://doi.org/10.4995/riai.2019.9542OJS6675171Alia, C., Gilles, T., Reine, T., Ali, C., Jun. 2015. Local trajectory planning and tracking of autonomous vehicles, using clothoid tentacles method. In: 2015 IEEE Intelligent Vehicles Symposium (IV). pp. 674-679. https://doi.org/10.1109/IVS.2015.7225762Bagheri, M., Siekkinen, M., Nurminen, J. K., Nov. 2014. Cellular-based vehicle to pedestrian (V2p) adaptive communication for collision avoidance. In: 2014 International Conference on Connected Vehicles and Expo (ICCVE). pp. 450-456. https://doi.org/10.1109/ICCVE.2014.7297588Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H., 2014. Three Decades of Driver Assistance Systems: Review and Future Perspectives. IEEE Intelligent Transportation Systems Magazine 6 (4), 6-22. https://doi.org/10.1109/MITS.2014.2336271Berntorp, K., Hoang, T., Quirynen, R., , Cairano, S.D., 2018. Control architecture design for autonomous vehicles. Conference on Control Technology and Applications (CCTA). https://doi.org/10.1109/CCTA.2018.8511371Bertoncello, M., Wee, D., 2015. Ten ways autonomous driving could redefine the automotive world | McKinsey & Company.Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., Hrovat, D., May 2007. Predictive Active Steering Control for Autonomous Vehicle Systems. IEEE Transactions on Control Systems Technology 15 (3), 566-580. https://doi.org/10.1109/TCST.2007.894653Favaró, F.M., Nader, N., Eurich, S.O., Tripp, M., Varadaraju, N., 2017. Examining accident reports involving autonomous vehicles in california. PLoS one 12(9). https://doi.org/10.1371/journal.pone.0184952Gonzalez, D., Pérez, J., Jun. 2013. Control architecture for Cybernetic Transportation Systems in urban environments. In: 2013 IEEE Intelligent Vehicles Symposium (IV). pp. 1119-1124. https://doi.org/10.1109/IVS.2013.6629616Gonzalez, D., Pérez, J., Lattarulo, R., Milanés, V., Nashashibi, F., Oct. 2014. Continuous curvature planning with obstacle avoidance capabilities in urban scenarios. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC). IEEE, Qingdao, China. https://doi.org/10.1109/ITSC.2014.6957887Gonzalez, D., Pérez, J., Milanés, V., Nashashibi, F., 2015. A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2015.2498841Harding, J., Powell, G., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., Lukuc, M., Simons, J., Wang, J., Aug. 2014. Vehicle-to-Vehicle Communications: Readiness of V2v Technology for Application. URL https://trid.trb.org/view.aspx?id=1323282Hessburg, T., Tomizuka, M., Aug. 1994. Fuzzy logic control for lateral vehicle guidance. IEEE Control Systems 14 (4), 55-63. https://doi.org/10.1109/37.295971Garcia de Jalon, J., Bayo, E., 1994. Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer-Verlag New York. springer-verlag new york ed., Springer-Verlag New York. https://doi.org/10.1007/978-1-4612-2600-0Jochem, T., Pomerleau, D., Kumar, B., Armstrong, J., 1995. PANS: a portable navigation platform. IEEE, pp. 107-112. URL http://ieeexplore.ieee.org/document/528266/Jones, T., Lennox, S., Sgueglia, J., Demerly, J., Zervoglos, N.A., Yang, H.H., 2018. Autonomous vehicle: modular architecture.Juez Uriagereka, G., Lattarulo, R., Perez Rastelli, J., Amparan Calonge, E., Ruiz Lopez, A., Espinoza Ortiz, H., Jun. 2017. Fault Injection method for Safety and Controllability Evaluation of Automated Driving. In: Fault Injection method for Safety and Controllability Evaluation of Automated Driving. Redondo Beach, California, pp. 1867 - 1872. https://doi.org/10.1109/IVS.2017.7995977Klaus, T.C., Twitty, C.K., ERLIEN, S.M., Kegelman, J.C., Price, C.A., SCHUH, A.B., SILVERMAN, B.J., SWITKES, J.P., 2018. Automated vehicle control system architecture.Kress-Gazit, H., Pappas, G. J., Aug. 2008. Automatically synthesizing a planning and control subsystem for the DARPA urban challenge. In: 2008 IEEE International Conference on Automation Science and Engineering. pp. 766-771. https://doi.org/10.1109/COASE.2008.4626549Lattarulo, R., González, L., Martí, E., Matute, J., Marcano, M., Pérez, J., 2018a. Urban motion planning framework based on n-bézier curves considering comfort and safety. Journal of Advanced Transportation. https://doi.org/10.1155/2018/6060924Lattarulo, R., Hess, D., Matute, J.A., Pérez, J., 2018b. Towards conformant models of automated electric vehicles. IEEE International Conference on Vehicular Electronics and Safety. https://doi.org/10.1109/ICVES.2018.8519484Lattarulo, R., Hess, D., Pérez, J., 2018c. A linear model predictive planning approach for overtaking manoeuvres under possible collision circumstances. IEEE Intelligent Vehicles Symposium (IV) , 1340 - 1345. https://doi.org/10.1109/IVS.2018.8500542Lattarulo, R., Martí, E., Marcano, M., Matute, J., Pérez, J., 2018d. A speed planner approach based on b'ezier curves using vehicle dynamic constrains and passengers comfort. IEEE International Symposium on Circuits and Systems (ISCAS) , 1 - 5. https://doi.org/10.1109/ISCAS.2018.8351307Lattarulo, R., Perez, J., Dendaluce, M., Jul. 2017. A complete framework for developing and testing automated driving controllers. In: A complete framework for developing and testing automated driving controllers. IFAC, Toulouse, France. https://doi.org/10.1016/j.ifacol.2017.08.043Lee, S. H., Lee, Y. O., Kim, B. A., Chung, C. C., Jun. 2012. Proximate model predictive control strategy for autonomous vehicle lateral control. In: 2012 American Control Conference (ACC). pp. 3605-3610.Li, S., Li, K., Rajamani, R., Wang, J., May 2011. Model Predictive Multi Objective Vehicular Adaptive Cruise Control. IEEE Transactions on Control Systems Technology 19 (3), 556-566. https://doi.org/10.1109/TCST.2010.2049203Marcano, M., Matute, J.A., Lattarulo, R., Martí, E., Pérez, J., 2018. Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Hindawi Complexity. https://doi.org/10.1155/2018/7615123Matute, J.A., Marcano, M., Asier Zubizarreta, J.P., 2018. Longitudinal model predictive control with comfortable speed planner. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). https://doi.org/10.1109/ICARSC.2018.8374161Milanés, V., Onieva, E., Pérez, J., de Pedro, T., González, C., 2009. Control de Velocidad basado en Lógica Borrosa para Entornos Urbanos Congestionados. Revista Iberoamericana de Automática e Informática Industrial RIAI 6 (4), 61-68. https://doi.org/10.1016/S1697-7912(09)70109-8Milanés, V., Villagra, J., Godoy, J., Simo, J., Perez, J., Onieva, E., Mar. 2012a. An Intelligent V2i-Based Traffic Management System. IEEE Transactions on Intelligent Transportation Systems 13 (1), 49-58. https://doi.org/10.1109/TITS.2011.2178839Milanés, V., Villagra, J., Pérez, J., Gonzalez, C., Jan. 2012b. Low-Speed Longitudinal Controllers for Mass-Produced Cars: A Comparative Study. IEEE Transactions on Industrial Electronics 59. https://doi.org/10.1109/TIE.2011.2148673Onieva, E., Milanés, V., Pérez, J., de Pedro, T., Apr. 2010. Estimación de un Control Lateral Difuso de Vehículos. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (2), 91-98. https://doi.org/10.1016/S1697-7912(10)70029-7Ozguner, U., Redmill, K. A., Broggi, A., Jun. 2004. Team TerraMax and the DARPA grand challenge: a general overview. In: IEEE Intelligent Vehicles Symposium, 2004. pp. 232-237.Pacejka, H. B., 2006. Tire and Vehicle Dynamics. In: Pacejka, H. B. (Ed.), Tire and Vehicle Dynamics, 2nd Edition. Butterworth-Heinemann, Oxford, p. 642.Perez, J., Milanes, V., Onieva, E., Mar. 2011. Cascade Architecture for Lateral Control in Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems 12 (1), 73-82. https://doi.org/10.1109/TITS.2010.2060722Perez, J., Milanes, V., Onieva, E., Godoy, J., Alonso, J., Apr. 2011. Longitudinal fuzzy control for autonomous overtaking. In: 2011 IEEE International Conference on Mechatronics. pp. 188-193. https://doi.org/10.1109/ICMECH.2011.5971279Perez, J., Nashashibi, F., Lefaudeux, B., Resende, P., Pollard, E., Feb. 2013. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas. Sensors (Basel, Switzerland) 13 (2), 2645-2663. https://doi.org/10.3390/s130202645Pérez R., J., Lattarulo, R., Nashashibi, F., 2014. Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles, in: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 510-515.Tas, Ö.S., Hörmann, S., Schaüfele, B., Kuhnt, F., 2018. Automated vehicle system architecture with performance assessment. IEEE International Conference on Intelligent Transportation Systems . https://doi.org/10.1109/ITSC.2017.8317862The International Traffic Safety Data and Analysis Group IRTAD, 2017. IRTAD: Road Safety Annual Report 2016. URL: https://www.itf-oecd.org/road-safety-annual-report-2016.Thrun, S., 2006. Winning the DARPA Grand Challenge: A Robot Race through the Mojave Desert. In: 21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06). https://doi.org/10.1109/ASE.2006.74Villagra, J., Milanes, V., Perez, J., de Pedro, T., Oct. 2010. Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (4), 44-52. https://doi.org/10.1016/S1697-7912(10)70059-5Woo, H. J., Park, S. B., Kim, J. H., Oct. 2008. Research of the optimal path planning methods for unmanned ground vehicle in DARPA Urban Challenge. In: 2008 International Conference on Control, Automation and Systems. pp. 586-589.Yoon, J., Crane, C. D., Oct. 2008. LADAR based obstacle detection in an urban environment and its application in the DARPA Urban challenge. In: 2008 International Conference on Control, Automation and Systems. pp. 581-585. https://doi.org/10.1109/ICCAS.2008.469456
Gastrointestinal stromal tumour in Meckel's diverticulum
<p>Abstract</p> <p>Background</p> <p>Meckel's Diverticulum is the most commonly encountered congenital anomaly of the small intestine, occurring in approximately 2% of the population. Occasionally Meckel's diverticulum harbors neoplasms.</p> <p>Case presentation</p> <p>A 65 year old gentleman, presented with a pelvic mass. On exploratory laparotomy, it turned out to be gastrointestinal stromal tumour (GIST) arising from Meckel's diverticulum. Short history and review of literature are discussed.</p> <p>Conclusion</p> <p>Neoplasms occurring from Meckel's diverticulum, even though rare, should be considered as differential diagnosis of pelvic masses arising from bowel, wherever imaging modalities fail to give a definitive diagnosis.</p
Carteggio D’Annunzio-Bruers
Il carteggio di D’Annunzio con Antonio Bruers, l’amico bibliotecario-archivista del Vittoriale, rappresenta un altro capitolo importante della biografia dannunziana, collocandosi nell’arco temporale che va dal 1921 al 1935, ultimo periodo di vita del Poeta. Al di là dei legami umani che si instaurano tra i due corrispondenti, tema vivo delle lettere è la fruttuosa collaborazione che portò alla nascita e sistemazione della biblioteca dannunziana e del primo nucleo dell’Archivio del Vittoriale degli Italiani; mentre, sullo sfondo, emergono i rapporti ambigui che D’Annunzio manteneva con gli organi ufficiali del Fascismo, come l’Accademia d’Italia, di cui Bruers diventò Vicecancelliere. Bruers però non è solo il fedele esecutore delle volontà del Poeta. Ha tratto dal suo lavoro preziose osservazioni, poi via via raccolte nei saggi memoriali, tracciando così quelle linee di ricerca che sono diventate preziose per la più recente filologia dannunziana. Le continue richieste di favori, prestiti, disbrigo di faccende e commissioni si configurano come un servigio d’amore che Bruers svolge con estremo sacrificio ma volentieri e gratuitamente, pur vedendosi relegato nella posizione di subalternità, visto che con D’Annunzio non si ha mai la sensazione di trattare alla pari, anche nel più semplice scambio di opinioni. Si soggiace alla sua volontà, si obbedisce supinamente, a stento si arriva a un compromesso, si strappa magari una promessa che il più delle volte rimane tradita e delusa: affascinati dalla parola e dal Mito schiacciante, D’Annunzio regge e governa il filo del discorso, ne traccia la linea e ne mantiene la tensione giusta; sa come ricucire gli strappi e come riaccendere negli altri il desiderio di sé. Ancora una volta un carteggio è testimone di questo straordinario gioco di ruolo su carta, su cui si conducono (e si nobilitano) le esistenze di chi ha intrecciato con lui il suo passo
Identification of the most common nitroderivates explosives by thin layer chromatography
Il monitoraggio di donne in post-menopausa in trattamento con tamoxifene per carcinoma mammario
Intelligent Longitudinal Merging Maneuver at Roundabouts Based on Hybrid Planning Approach
Publisher Copyright: © 2020, Springer Nature Switzerland AG.Roundabout intersections promote a continuous traffic flow, with less congestion and more safety than standard intersections. However, there are several problems related to its entrance. In this way, the article presents a method to solve the roundabout merging combining a nominal trajectory generated with Bézier curves with a Model Predictive Control (MPC) to assure safe maneuvers. Simulation results using Dynacar are shown and the good performance of the approach under merging maneuvers is demonstrated.Acknowledgment. This work was supported in part by the ECSEL Project ENABLE-S3 with grant agreement number 692455-2 and the Spanish Ministry of Economy, Industry and Competitiveness TEC2016-77618-R (AEI/FEDER, UE).Peer reviewe
- …
