1,514 research outputs found
Genetic markers in s. Paratyphi c reveal primary adaptation to pigs
Salmonella enterica with the identical antigenic formula 6,7:c:1,5 can be differentiated biochemically and by disease syndrome. One grouping, Salmonella Paratyphi C, is currently considered a typhoidal serovar, responsible for enteric fever in humans. The human-restricted typhoidal serovars (S. Typhi and Paratyphi A, B and C) typically display high levels of genome degradation and are cited as an example of convergent evolution for host adaptation in humans. However, S. Paratyphi C presents a different clinical picture to S. Typhi/Paratyphi A, in a patient group with predisposition, raising the possibility that its natural history is different, and that infection is invasive salmonellosis rather than enteric fever. Using whole genome sequencing and metabolic pathway analysis, we compared the genomes of 17 S. Paratyphi C strains to other members of the 6,7:c:1,5 group and to two typhoidal serovars: S. Typhi and Paratyphi A. The genome degradation observed in S. Paratyphi C was much lower than S. Typhi/Paratyphi A, but similar to the other 6,7:c:1,5 strains. Genomic and metabolic comparisons revealed little to no overlap between S. Paratyphi C and the other typhoidal serovars, arguing against convergent evolution and instead providing evidence of a primary adaptation to pigs in accordance with the 6,7:c:1.5 strains
Neutron reflection from the liquid helium surface.
The reflection of neutrons from a helium surface has been observed for the first time. The 4He surface is smoother in the superfluid state at 1.54 K than in the case of the normal liquid at 2.3 K. In the superfluid state we also observe a surface layer ~200 Å thick which has a subtly different neutron scattering cross-section, which may be explained by an enhanced Bose-Einstein condensate fraction close to the helium surface. The application of neutron reflectometry described in this paper creates new and exciting opportunities for the surface and interfacial study of quantum fluids
Positional, Reorientational and Bond Orientational Order in DNA Mesophases
We investigate the orientational order of transverse polarization vectors of
long, stiff polymer molecules and their coupling to bond orientational and
positional order in high density mesophases. Homogeneous ordering of transverse
polarization vector promotes distortions in the hexatic phase, whereas
inhomogeneous ordering precipitates crystalization of the 2D sections with
different orientations of the transverse polarization vector on each molecule
in the unit cell. We propose possible scenarios for going from the hexatic
phase, through the distorted hexatic phase to the crystalline phase with an
orthorhombic unit cell observed experimentally for the case of DNA.Comment: 4 pages, 2 figure
- …
