5 research outputs found

    Gramine derivatives targeting Ca2+ channels and Ser/Thr phosphatases: A new dual strategy for the treatment of neurodegenerative diseases

    Full text link
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of Medicinal Chemistry , copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00478We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer’s disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca2+ channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine. In general, these compounds reduced the entry of Ca2+ through VGCC, as measured by Fluo-4/AM and patch clamp techniques, and protected in Ca2+ overload-induced models of neurotoxicity, like glutamate or veratridine exposures. Furthermore, we hypothesize that these compounds decrease τ hyperphosphorylation based on the maintenance of the Ser/Thr phosphatase activity and their neuroprotection against the damage caused by okadaic acid. Hence, we propose this multitarget approach as a new and promising strategy for the treatment of neurodegenerative diseasesThis work was supported by the following grant: Proyectos de Investigación en Salud (PI13/00789, IS Carlos III). R.L.C is granted by Universidad Autónoma de Madri
    corecore