2,237 research outputs found

    Renormalized effective actions for the O(N) model at next-to-leading order of the 1/N expansion

    Full text link
    A fully explicit renormalized quantum action functional is constructed for the O(N)-model in the auxiliary field formulation at next-to-leading order (NLO) of the 1/N expansion. Counterterms are consistently and explicitly derived for arbitrary constant vacuum expectation value of the scalar and auxiliary fields. The renormalized NLO pion propagator is exact at this order and satisfies Goldstone's theorem. Elimination of the auxiliary field sector at the level of the functional provides with order N^0 accuracy the renormalized effective action of the model in terms of the original variables. Alternative elimination of the pion and sigma propagators provides the renormalized NLO effective potential for the expectation values of the N-vector and of the auxiliary field with the same accuracy.Comment: RevTeX4, 19 pages, 3 figures. Version published Phys. Rev.

    Classical Physics and Quantum Loops

    Get PDF
    The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.Comment: 15 pages, 3 figure

    Local Approximations for Effective Scalar Field Equations of Motion

    Full text link
    Fluctuation and dissipation dynamics is examined at all temperature ranges for the general case of a background time evolving scalar field coupled to heavy intermediate quantum fields which in turn are coupled to light quantum fields. The evolution of the background field induces particle production from the light fields through the action of the intermediate catalyzing heavy fields. Such field configurations are generically present in most particle physics models, including Grand Unified and Supersymmetry theories, with application of this mechanism possible in inflation, heavy ion collision and phase transition dynamics. The effective evolution equation for the background field is obtained and a fluctuation-dissipation theorem is derived for this system. The effective evolution in general is nonlocal in time. Appropriate conditions are found for when these time nonlocal effects can be approximated by local terms. Here careful distinction is made between a local expansion and the special case of a derivative expansion to all orders, which requires analytic behavior of the evolution equation in Fourier space.Comment: 14 pages, 2 figures. Replaced with published version. Some extra typos correcte

    Zurek-Kibble Mechanism for the Spontaneous Vortex Formation in Nb−Al/Alox/NbNb-Al/Al_{ox}/Nb Josephson Tunnel Junctions: New Theory and Experiment

    Get PDF
    New scaling behavior has been both predicted and observed in the spontaneous production of fluxons in quenched Nb−Al/Alox/NbNb-Al/Al_{ox}/Nb annular Josephson tunnel junctions as a function of the quench time, τQ\tau_{Q}. The probability f1f_{1} to trap a single defect during the N-S phase transition clearly follows an allometric dependence on τQ\tau_{Q} with a scaling exponent σ=0.5\sigma = 0.5, as predicted from the Zurek-Kibble mechanism for {\it realistic} JTJs formed by strongly coupled superconductors. This definitive experiment replaces one reported by us earlier, in which an idealised model was used that predicted σ=0.25\sigma = 0.25, commensurate with the then much poorer data. Our experiment remains the only condensed matter experiment to date to have measured a scaling exponent with any reliability.Comment: Four pages, one figur

    The packing of granular polymer chains

    Full text link
    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here we study the disordered packing of chains constructed out of flexibly-connected hard spheres. Using X-ray tomography, we find long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly-oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally we uncover close similarities between the packing of chains and the glass transition in polymers.Comment: 11 pages, 4 figure

    Optimized perturbation theory for charged scalar fields at finite temperature and in an external magnetic field

    Full text link
    Symmetry restoration in a theory of a self-interacting charged scalar field at finite temperature and in the presence of an external magnetic field is examined. The effective potential is evaluated nonperturbatively in the context of the optimized perturbation theory method. It is explicitly shown that in all ranges of the magnetic field, from weak to large fields, the phase transition is second order and that the critical temperature increases with the magnetic field. In addition, we present an efficient way to deal with the sum over the Landau levels, which is of interest especially in the case of working with weak magnetic fields.Comment: 18 pages, 7 eps figures. References added and some small improvements to the tex

    Exactly solvable model of the 2D electrical double layer

    Get PDF
    We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike ±\pm unit charges in the stability-against-collapse regime of reduced inverse temperatures 0≤β<20\le \beta<2. If there is a potential difference between the bulk interior of the electrolyte and the grounded interface, the electrolyte region close to the interface (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the non-perturbative result for the asymptotic density profile at a strictly nonzero β\beta that the Debye-H\"uckel β→0\beta\to 0 limit is a delicate issue.Comment: 14 page

    More on Gribov copies and propagators in Landau-gauge Yang-Mills theory

    Full text link
    Fixing a gauge in the non-perturbative domain of Yang-Mills theory is a non-trivial problem due to the presence of Gribov copies. In particular, there are different gauges in the non-perturbative regime which all correspond to the same definition of a gauge in the perturbative domain. Gauge-dependent correlation functions may differ in these gauges. Two such gauges are the minimal and absolute Landau gauge, both corresponding to the perturbative Landau gauge. These, and their numerical implementation, are described and presented in detail. Other choices will also be discussed. This investigation is performed, using numerical lattice gauge theory calculations, by comparing the propagators of gluons and ghosts for the minimal Landau gauge and the absolute Landau gauge in SU(2) Yang-Mills theory. It is found that the propagators are different in the far infrared and even at energy scales of the order of half a GeV. In particular, also the finite-volume effects are modified. This is observed in two and three dimensions. Some remarks on the four-dimensional case are provided as well.Comment: 23 pages, 16 figures, 6 tables; various changes throughout most of the paper; extended discussion on different possibilities to define the Landau gauge and connection to existing scenarios; in v3: Minor changes, error in eq. (3) & (4) corrected, version to appear in PR

    New Experiments for Spontaneous Vortex Formation in Josephson Tunnel Junctions

    Get PDF
    It has been argued by Zurek and Kibble that the likelihood of producing defects in a continuous phase transition depends in a characteristic way on the quench rate. In this paper we discuss an improved experiment for measuring the Zurek-Kibble scaling exponent σ\sigma for the production of fluxons in annular symmetric Josephson Tunnel Junctions. We find σ≃0.5\sigma \simeq 0.5. Further, we report accurate measurements of the junction gap voltage temperature dependence which allow for precise monitoring of the fast temperature variations during the quench.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Quantum Extremism: Effective Potential and Extremal Paths

    Full text link
    The reality and convexity of the effective potential in quantum field theories has been studied extensively in the context of Euclidean space-time. It has been shown that canonical and path-integral approaches may yield different results, thus resolving the `convexity problem'. We discuss the transferral of these treatments to Minkowskian space-time, which also necessitates a careful discussion of precisely which field configurations give the dominant contributions to the path integral. In particular, we study the effective potential for the N=1 linear sigma model.Comment: 11 pages, 4 figure
    • …
    corecore