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February 1, 2008

Abstract

The standard picture of the loop expansion associates a factor of h̄
with each loop, suggesting that the tree diagrams are to be associated
with classical physics, while loop effects are quantum mechanical in
nature. We discuss examples wherein classical effects arise from loop
contributions and display the relationship between the classical terms
and the long range effects of massless particles.
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1 Introduction

It is commonly stated that the loop expansion in quantum field theory is
equivalent to an expansion in h̄. Although this is mentioned in several field
theory textbooks, we have not found a fully compelling proof of this state-
ment. Indeed, no compelling proof is possible because the statement is not
true in general. In this paper we describe several exceptions - cases where
classical effects are found within one loop diagrams - and discuss what goes
wrong with purported “proofs”.

Most physicists performing quantum mechanical calculations eschew keep-
ing track of factors of h̄, and use units wherein h̄ is set to unity—only when
numerical results are needed are these factors restored. However, use of this
procedure can cloak the difference between classical and quantum mechani-
cal effects, since the former are distinguished from the latter merely by the
absence of factors of h̄. This is also the practice in many field theory texts,
but there is often a discussion in such works about a one to one connection
between the number of loops and the factors of h̄[1]. The argument used in
order to make this connection is a simple one, and is worth outlining here: In
calculating a typical Feynman diagram, the presence of a vertex arises from
the expansion of

exp
i

h̄

∫

Lint(φin)d
4x

and so carries with it a factor of h̄−1. On the other hand the field commuta-
tion relations

[φ(~x), π(~y] = ih̄δ3(~x − ~y)

lead to a factor of h̄ in each propagator

< 0|T (φ(x)φ(y))|0 >=
∫

d4k

(2π)4

ih̄eik(x−y)

k2 − m2

h̄2 − iǫ

The counting of factors of h̄ then involves calculating the number of vertices
and propagators in a given diagram. For a diagram with V vertices and I
internal lines the number of independent momenta is L = I − V + 1 and
corresponds to the number of loops. Associating a factor of h̄−1 for the V
vertices and h̄+1 for the I propagators yields an overall factor

h̄I−V +1 = h̄L
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which is the origin of the claim that the loop expansion coincides with an
expansion in h̄. We shall demonstrate in the next section, however, that this
assertion in not valid.

2 A counterexample

Let us give an example where one obtains classical results from a one-loop
calculation. This example is chosen because it is easy to identify the classical
and quantum effects. We describe the one-loop QED calculation of the matrix
element of the energy- momentum tensor between initial and final plane wave
states[2]. For simplicity, we shall discuss below the case wherein these states
are spinless, but the calculation was performed also for spin 1/2 systems and
the results are the same.

The basic structure of the matrix element is given by

< p2|Tµν(0)|p1 >=
1√

4E2E1

[2PµPνF1(q
2) + (qµqν − ηµνq

2)F2(q
2)] (1)

where F1(q
2), F2(q

2) are form factors, to be determined. In lowest order the
energy-momentum tensor form factors are

F1(q
2) = 1, F2(q

2) = −1

2
, (2)

but these simple results are modified by loops, and the form factors will
receive corrections of order e2 at one loop order. One can evaluate these
modifications using the diagrams shown in Figure 1, and the results are
found to be[2]

F1(q
2) = 1 +

e2

16π2

q2

m2

(

3

4

mπ2

√
−q2

− 8

3
+ 2 log

−q2

m2
− 4

3
log

λ

m

)

+ . . .

F2(q
2) = −1

2
+

e2

16π2

(

mπ2

2
√
−q2

− Ω − 26

9
+

4

3
log

−q2

m2

)

+ . . . (3)

where

Ω =
2

ǫ
− γ − log

m2

4πµ2
(4)

The factors of h̄ will be inserted in the discussion of the next section.
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(a) (b) (c) (d)

(e)
X

(f) (g)
X
(h)

Figure 1: Feynman diagrams for spin 0 radiative corrections to Tµν .
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It is easiest to separate the classical and quantum effects by going to
coordinate space via a Fourier transform. The key terms are those that have

a nonanalytic structure such as
√

−q2/m2 and q2 ln−q2. These both arise
only from those diagrams where the energy momentum tensor couples to
the photon lines. In particular, the square root term comes uniquely from
Figure 1c. We will see that the square root turns into a well known classical
correction while the logarithm generates a quantum correction. Specifically
we take the transform

Tµν(~r) =
∫ d3q

(2π)3
ei~q·~rTµν(~q) (5)

Using
∫

d3q

(2π)3
ei~q·~r|~q| = − 1

π2r4

as well as
∫

d3q

(2π)3
ei~q·~r~q2 log ~q2 =

3

πr5

and including powers of h̄ in the result, we find

T00(~r) = mδ3(~r) +
e2

32π2r4
− e2h̄

4π3mr5
+ . . .

T0i(~r) = 0

Tij(~r) = − e2

16π2r4

(

rirj

r2
− 1

2
δij

)

− e2h̄

16π3mr5
(3δij − 5

rirj

r2
) + . . . (6)

We see then that Eq. 6 includes both corrections which are independent of
h̄ as well as pieces which are linear in this quantity.

The interpretation of the classical terms is clear. Since the energy-
momentum tensor for the electromagnetic field has the form[3]

TEM
µν = −FµλFν

λ +
1

4
ηµνFλδF

λδ (7)

and, for a simple point charge, we have

E =
e

4πr2
r̂
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we determine

TEM
00 (~r) =

1

2
E2 =

e2

32π2r4

TEM
0i (~r) = 0 (8)

TEM
ij (~r) = −EiEj +

1

2
δijE

2 = − e2

16π2r4

(

rirj

r2
− 1

2
δij

)

(9)

which agree exactly with the component of Eq. 6 which falls as 1/r4. Despite
arising from a loop calculation then this is a classical effect, due to the
feature that the energy momentum tensor can couple to the electric field
surrounding the particle as well as to the particle directly. At tree level,
the energy momentum tensor represents only that of the charged particle
itself. However, the charged particle has an associated classical electric field
and that field also carries energy-momentum. The one loop diagrams where
the energy momentum tensor couples to the photon lines correspond to the
process whereby the charged particle generates the electric field, which is
in turn and measured by the energy momentum tensor. From this point of
view, it is not surprising that the calculation yields a classical term - there
is energy in the classical field at this order in e2 and a calculation at order
e2 must be capable of uncovering it.

Of course, the full loop calculation also contains additional physics, the
leading piece of which is quantum mechanical in nature and falls as h̄/mr5.1

So we see that the one loop diagram contains both classical and quantum
physics.

1The form of these terms can be understood in a handwaving fashion from the feature
that while the distance r between a source and test particle is well defined classically, at
the quantum level there are fluctuations of order the Compton wavelength

r −→ r + δr

with δr ∼ h̄/m. When expanded via

1/(r + δr)4 ∼ 1

r4
− 4

δr

r5
=

1

r4
− 4h̄

mr5

we see that the form of such corrections is as found in the loop calculation. That such
Compton wavelength corrections are quantum mechanical in nature, as can be seen from
the explicit factor of h̄.
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3 What Went Wrong?

The argument that the loop expansion is equivalent to an expansion in h̄
clearly failed in the above calculation, and in this section we shall examine
this failure in more detail.

One loophole to the original argument is visible in the propagator, which
contains h̄ in more than one location. When the propagator written in terms
of an integral over the wavenumber, the mass carries an inverse factor of h̄.
This is because the Klein-Gordon equation reads

(2 +
m2

h̄2 )φ(x) = 0

when h̄ is made visible. This means that the counting of h̄ from the vertices
and the propagator is incomplete—one also needs to know how the mass
enters the result, because there are factors of h̄ attached therein also.

In the previously discussed loop calculation of the formfactors of the
energy momentum tensor, we can display the factors of h̄ in momentum
space. Returning h̄ to the formula for F1 we find (we continue to use c = 1)

F1(k) = 1 +
e2

16π2h̄

h̄2k2

m2





3

4

mπ2

√

−h̄2k2
− 8

3
+ 2 log

−h̄2k2

m2
− 4

3
log

λ

m



+ . . .

= 1 +
3e2

√
−k2

64m
+

h̄e2k2

16π2m2

(

−8

3
+ 2 log

−h̄2k2

m2
− 4

3
log

λ

m

)

+ . . .(10)

Here we have written the momentum in terms of the wavenumber q = h̄k,
and we note that e2/h̄ is dimensionless in Gaussian units(with c = 1). It is
easy to see then that the coefficient of the square root nonanalytic behavior is
independent of h̄, while the logarithmic term has one power of h̄ remaining.
This is fully consistent with the coordinate space analysis of the previous
section and illustrates the feature that terms which carry different powers of
the momentum and mass can have different factors of h̄.

We see then that the one loop result carries different powers of h̄ because
it contains different powers of the factor q2/m2. Moreover, we can be more
precise. With the general expectation of one factor of h̄ at one loop, there is
a specific combination of the mass and momentum that eliminates h̄ in order
to produce a classical result. In order to remove one power of h̄ requires a
factor of

√

m2

−q2
=

m

h̄
√
−k2

(11)
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This is a nonanalytic term which is generated only by the propagation of
massless particles. The emergence of the power of h̄−1 involves an interplay
between the massive particle (whose mass carries the factor of h̄) and the
massless one (which generates the required nonanalytic form). This result
suggests that one can generate classical results from one loop processes in
the presence of massless particles, which have long range propagation and
therefore generate the required nonanalytic momentum behavior.

4 Additional Examples

In this section we describe other situations where classical results are found
in one loop calculations. All involve couplings to massless particles.

The calculation of the energy momentum tensor can be extended to in-
clude graviton loops as has been done in Ref.[4]. Here there exists a superficial
difference in that the gravitational coupling constant carries a mass dimen-
sion and the one loop result involves the Newtonian gravitational constant
GN . This feature might be thought to change the counting in h̄, but it does
not. Again the important diagrams are those in which the energy momentum
vertex couples to the graviton line. The resulting (spinless) form factors were
found to be

F1(q
2) = 1 +

Gq2

π
(

1

16

π2m√
−q2

− 3

4
log

−q2

m2
) + . . .

F2(q
2) = −1

2
+

Gm2

π
(
7

8

π2m√
−q2

− 2 log
−q2

m2
) + . . . (12)

corresponding to a co-ordinate space energy-momentum tensor:

T00(~r) = mδ3(r) − 3Gm2

8πr4
− 3Gmh̄

4π2r5
+ . . .

T0i(~r) = 0

Tij(~r) = −7Gm2

4πr4

(

rirj

r2
− 1

2
δij

)

+
Gmh̄

2π2r5

(

9δij − 15
rirj

r2

)

+ . . . (13)

This result can be compared with that arising from the classical energy-
momentum pseudo-tensor for the gravitational field[5]
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8πGT grav
µν = −1

2
h(1)λκ[∂µ∂νh

(1)
λκ + ∂λ∂κh

(1)
µν

− ∂κ

(

∂νh
(1)
µλ + ∂µh

(1)
νλ

)

]

− 1

2
∂λh

(1)
σν ∂λh(1)σ

µ +
1

2
∂λh

(1)
σν ∂σh(1)λ

µ − 1

4
∂νh

(1)
σλ∂µh

(1)σλ

− 1

4
ηµν(∂λh

(1)
σχ∂σh(1)λχ − 3

2
∂λh

(1)
σχ∂λh(1)σχ) − 1

4
h(1)

µν 2h(1)

+
1

2
ηµνh

(1)αβ
2h

(1)
αβ (14)

Using the lowest order solution

h(1)
µν (r) = −δµν

2Gm

r
(15)

the 1/r4 components of Eqs. 13 and 14 are seen to agree. Equivalently, the
expression of the energy momentum tensor can be used to calculate the metric
around the particle[4]. Doing so yields the nonlinear classical corrections to
order G2 in the Schwarzschild metric (in harmonic gauge)

g00 = 1 − 2
Gm

r
+ 2

G2m2

r2
+ . . .

g0i = 0

gij = −δij

(

1 + 2
Gm

r
+

G2m2

r2

)

− rirj

r2

G2m2

r2
+ . . . (16)

as well as associated quantum corrections[4]. The classical correction arises
from the square-root nonanalytic term in momentum space.

Again we see then that the one-loop term contains classical (and quan-
tum) physics. Despite the dimensionful coupling constant, the key feature
has again been the presence of square root nonanalytic terms.

Classical results can also be found in other systems, not just in energy
momentum tensor form factors. An example from electromagnetism involves
the interaction between an electric charge and a neutral system described by
an electric/magnetic polarizability. The classical physics here is clear—the
presence of an electric charge produces an electric dipole moment ~p in the
charge distribution of the neutral system, the size of which is given in terms
of the electric polarizability αE via

~p = 4παE
~E (17)
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However, a dipole also interacts with the field, via the energy

U = −1

2
~p · ~E = −1

2
4παE

~E2 (18)

Since, for a point charge ~E = er̂
4πr2 , there exists a simple classical energy

U = −1

2

e2αE

4πr4
(19)

This result can be also be seen to arise via a simple one loop diagram, as
shown in Figure 2. Again, for simplicity, we assume that both systems are
spinless. The two-photon vertex associated with the electric polarizability
can be modelled in terms of a transition to a JP = 1− intermediate state (cf.
Figure 2), yielding the Compton structure

AmpE =
8π

m
αE [ǫ1 · ǫ2P · k2P · k1 + ǫ1 · Pǫ2 · Pk1 · k2

− ǫ1 · Pǫ2 · k1P · k2 − ǫ2 · Pǫ1 · k2P · k1] (20)

where P = 1
2
(p1 + p2) is the mean hadron four- momentum. One can also

include the magnetic polarizability via transition to a JP = 1+ intermediate
state, yielding

AmpB =
8π

m
αB [ǫ1 · ǫ2P · k2P · k1 + ǫ1 · Pǫ2 · Pk1 · k2

− ǫ1 · Pǫ2 · k1P · k2 − ǫ2 · Pǫ1 · k2P · k1

− k1 · k2ǫ1 · ǫ2P · P + ǫ1 · k2ǫ2 · k1P · P ] (21)

Calculating Figure 2 via standard methods, and keeping the nonanalytic
pieces of the various Feynman triangle integrals, one finds the threshold
amplitude

Amp =
e2q2m

4π

[

2αEπ2

√

M2

−q2
+ (

11

3
αE +

5

3
βM )

]

(22)

where we have indicated the separate contributions from pole and seagull dia-
grams. Including the normalization factor 1/4mM and Fourier transforming
we find the potential energy

V2γ(r) = −1

2

αemαE

r4
+

αem(11αE + 5βM)h̄

Mr5
+ ... (23)
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1±

0+

0+

+ 1±

0+

0+

Figure 2: One loop diagrams used to model the interaction of a charged
particle with a neutral polarizable system.

We see again that the one loop calculation has yielded the classical term
accompanied by quantum corrections. It should be noted here that, although
we have represented the two photon electric/magnetic polarizability coupling
in terms of a simple contact interaction, as done by Bernabeu and Tarrach[6],
the result is in complete agreement with a full box plus triangle diagram
calculation by Sucher and Feinberg[7].

There exist additional examples—a similar result obtains by considering
the generation of an electric quadrupole moment by an external field gradient.
Defining the field gradient via

Eij =
1

2
(∇iEj + ∇jEi)) (24)

and the quadrupole polarizability via

Qij = 4παE2Eij (25)

The classical energy due to interaction of this moment with the field gradient
is given by

U = −1

2
αE2EijEij (26)

The quadrupole polarizability can be modelled in terms of excitation to a
JP = 2+ excited state and again, a simple one loop calculation finds a com-
bination of classical and quantum terms. Similarly, in a gravitational analog,
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the presence of a point mass produces a field gradient which generates a grav-
itational quadrupole, which in turn interacts with the field gradient and leads
to a classical energy.

Finally, the gravitational potential between two heavy masses has been
treated to one loop in an effective field theory treatment of quantum gravity[8].
Again, the diagrams involving two graviton propagators in a loop yield square
root nonanalytic terms which reproduce the nonlinear classical corrections to
the potential which are predicted by general relativity[9]. This feature has
been known for some time[10].

5 A dispersive treatment

The lesson here is clear—these examples all involve one loop diagrams which
contain a combination of classical and quantum mechanical effects, wherein
the classical piece is signaled by the presence of a square root nonanalytic-
ity while the quantum component is associated with a ln−q2 term. These
results violate the usual expectation of the loop-h̄ expansion. We can fur-
ther understand the association of classical effects with massless particles by
studying a dispersive treatment. In this approach we can see directly that
the classical terms are associated with the dispersion integral extending down
to zero momentum, which is possible only if the particles in the associated
cut are massless.

It is useful to use the Cutkosky rules to look at the absorptive component
of the triangle diagram shown in Figure 3, wherein we assume (temporarily)
that the exchanged particles have mass µ. A simple calculation yields[11]

γ(q2) ≡ Abs
∫

d4k

(2π)4

1

(k2 − µ2)((k − q)2 − µ2)((k − p)2 − M2)

=
∫

d4k

(2π)4

(2πi)2δ(k2 − µ2)δ((k − q)2 − µ2)

(k2 − µ2)((k − q)2 − µ2)((k − p)2 − M2)
(27)

where

γ(q2) =
1

8π
√

q2(4M2 − q2)
tan−1

√

(q2 − 4µ2)(4M2 − q2)

q2 − 2µ2
(28)

The corresponding dispersion integral is given by

Γ(q2) =
1

π

∫

∞

4µ2

dtγ(t)

t − q2 − iǫ
(29)
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k

k − q

p − k

k

p − q

Figure 3: Generic triangle diagram used in dispersive analysis.

The argument of the arctangent vanishes at threshold and the dispersion
integral yields a form of no particular interest. On the other hand in the
limit µ → 0, the argument of the arctangent becomes infinite at threshold
and instead we write

γ(q2) =
1

8π
√

q2(4M2 − q2)





π

2
− tan−1

√

√

√

√

q2

(4M2 − q2)



 (30)

where we have separated the result into two components—the piece propor-
tional to π/2, which arises from the on-shell (delta function) piece of the
mass M propagator and the remaining terms which arise from the principal
value integration. The dispersion integral now begins at zero and yields a
logarithmic result from pieces of γ(q2) which behave as a constant as q2 → 0,
while square root pieces arise from terms in γ(q2) which behave as 1/

√
q2

in the infrared limit. From Eq. 30 we see that the former—the quantum
component—arises from the principal value integration while the latter—the
classical component—is associated with the on- shell contributions to γ(q2).
This is to be expected. A classical contribution should arise from the case
where both initial/final and intermediate state particles are on shell and
therefore physical.

In the electromagnetic case, we can understand how such a classical term
arises by writing the Maxwell equation as

12



Aµ =
1

2
jµ

Since the inverse D’Alembertian corresponds to the photon propagator, we
see that components of the triangle integral involving the massive particle
being on-shell leads to physical values of the charge density jµ and therefore
to physical values of the vector potential. Comparing with Eqn. 28 we see
that if µ 6= 0 then, there exists no possibility of a square root term and
therefore no way for classical physics to arise. Thus the existence of classical
pieces can be traced to the existence of two (or more!) massless propagators
in the Feynman integration.

6 Conclusions

We have seen above that in the presence of at least two massless propagators,
classical physics can arise from loop contributions, in apparent contradiction
to the usual loop- h̄ expansion arguments. The presence of classical correc-
tions are associated with a specific nonanalytic term in momentum space.
Using a dispersion integral the origin of this phenomenon has been traced
to the infrared behavior of the Feynman diagrams involved, which is altered
dramatically when the threshold of the dispersion integration is allowed to
vanish, as can occur when two or more massless propagators are present. We
conclude that the standard expectation that the loop expansion is equivalent
to an h̄ expansion is not valid in the presence of coupling to two or more
massless particles.
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