574 research outputs found

    Measurement of Radiation Damage to 130nm Hybrid Pixel Detector Readout Chips

    Get PDF
    We present the first measurements of the performance of the Medipix3 hybrid pixel readout chip after exposure to significant x-ray flux. Specifically the changes in performance of the mixed mode pixel architecture, the digital periphery, digital to analogue converters and the e-fuse technology were characterised. A high intensity, calibrated x- ray source was used to incrementally irradiate the separate regions of the detector whilst it was powered. This is the first total ionizing dose study of a large area pixel detector fabricated using the 130nm CMOS technology

    Edge pixel response studies of edgeless silicon sensor technology for pixellated imaging detectors

    Get PDF
    Silicon sensor technologies with reduced dead area at the sensor's perimeter are under development at a number of institutes. Several fabrication methods for sensors which are sensitive close to the physical edge of the device are under investigation utilising techniques such as active-edges, passivated edges and current-terminating rings. Such technologies offer the goal of a seamlessly tiled detection surface with minimum dead space between the individual modules. In order to quantify the performance of different geometries and different bulk and implant types, characterisation of several sensors fabricated using active-edge technology were performed at the B16 beam line of the Diamond Light Source. The sensors were fabricated by VTT and bump-bonded to Timepix ROICs. They were 100 and 200 μ m thick sensors, with the last pixel-to-edge distance of either 50 or 100 μ m. The sensors were fabricated as either n-on-n or n-on-p type devices. Using 15 keV monochromatic X-rays with a beam spot of 2.5 μ m, the performance at the outer edge and corners pixels of the sensors was evaluated at three bias voltages. The results indicate a significant change in the charge collection properties between the edge and 5th (up to 275 μ m) from edge pixel for the 200 μ m thick n-on-n sensor. The edge pixel performance of the 100 μ m thick n-on-p sensors is affected only for the last two pixels (up to 110 μ m) subject to biasing conditions. Imaging characteristics of all sensor types investigated are stable over time and the non-uniformities can be minimised by flat-field corrections. The results from the synchrotron tests combined with lab measurements are presented along with an explanation of the observed effects

    The Bivariate Normal Copula

    Full text link
    We collect well known and less known facts about the bivariate normal distribution and translate them into copula language. In addition, we prove a very general formula for the bivariate normal copula, we compute Gini's gamma, and we provide improved bounds and approximations on the diagonal.Comment: 24 page

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    Error analysis of nuclear mass fits

    Full text link
    We discuss the least-square and linear-regression methods, which are relevant for a reliable determination of good nuclear-mass-model parameter sets and their errors. In this perspective, we define exact and inaccurate models and point out differences in using the standard error analyses for them. As an illustration, we use simple analytic models for nuclear binding energies and study the validity and errors of models' parameters, and uncertainties of its mass predictions. In particular, we show explicitly the influence of mass-number dependent weights on uncertainties of liquid-drop global parameters.Comment: 10 RevTeX pages, 9 figures, submitted to Physical Review

    Social behaviour and collective motion in plant-animal worms

    Get PDF
    © 2016 The Author(s) Published by the Royal Society. All rights reserved. Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary prin- ciple by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by com- paring them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local inter- actions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun- exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organ- ism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages

    Simultaneous determination of iron and copper in children's sera by FAAS

    Get PDF
    Predložena je nova jednostavna metoda plamene atomsko-apsorpcijske spektrometrije (FAAS), za simultano određivanje željeza i bakra u serumu djece. Ona se temelji na predobradbi uzorka u jednom koraku (deproteinizacija s 3 mol L–3 HCl u odnosu 1:1) i kalibraciji u jednom koraku sa standardom pripravljenim u 1.5 mol L–3 HCl. Tijekom optimizacije metode primijenjen je multifaktorski dizajnirani eksperiment. Preporučena metoda osigurava ispravnost, osjetljivost i preciznost usporedljivu onima referentnih metoda. Novi je pristup jednostavan i brz; on štedi i vrijeme i reagense i uzorke, pri čemu je potonje posebno važno u dječjoj dijagnostici.A new and simple flame atomic-absorption spectrometric (FAAS) method is proposed for simultaneous determination of iron and copper in children's sera. It is based on single-step sample pretreatment (deproteinization with 3 mol L–1 HCl, ratio 1:1) and single-step calibration using 1.5 mol L–1 HCl standard. During method’s optimization a short multifactorial design experiment was used. The proposed method assures accuracy, sensitivity and precision comparable to that of the reference methods. The new approach is simple and time-, labour- and serum-saving, the latter being especially important in pediatric diagnostics

    Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice

    Get PDF
    We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al
    corecore