406 research outputs found

    A novel computer adaptive word list memory test optimized for remote assessment: Psychometric properties and associations with neurodegenerative biomarkers in older women without dementia

    Get PDF
    Introduction: This study established the psychometric properties and preliminary validity of the Stricker Learning Span (SLS), a novel computer adaptive word list memory test designed for remote assessment and optimized for smartphone use. Methods: Women enrolled in the Mayo Clinic Specialized Center of Research Excellence (SCORE) were recruited via e-mail or phone to complete two remote cognitive testing sessions. Convergent validity was assessed through correlation with previously administered in-person neuropsychological tests (n = 96, ages 55-79) and criterion validity through associations with magnetic resonance imaging measures of neurodegeneration sensitive to Alzheimer\u27s disease (n = 47). Results: SLS performance significantly correlated with the Auditory Verbal Learning Test and measures of neurodegeneration (temporal meta-regions of interest and entorhinal cortical thickness, adjusting for age and education). Test-retest reliabilities across two sessions were 0.71-0.76 (two-way mixed intraclass correlation coefficients). Discussion: The SLS is a valid and reliable self-administered memory test that shows promise for remote assessment of aging and neurodegenerative disorders

    String Matching and 1d Lattice Gases

    Full text link
    We calculate the probability distributions for the number of occurrences nn of a given ll letter word in a random string of kk letters. Analytical expressions for the distribution are known for the asymptotic regimes (i) k≫rl≫1k \gg r^l \gg 1 (Gaussian) and k,l→∞k,l \to \infty such that k/rlk/r^l is finite (Compound Poisson). However, it is known that these distributions do now work well in the intermediate regime k≳rl≳1k \gtrsim r^l \gtrsim 1. We show that the problem of calculating the string matching probability can be cast into a determining the configurational partition function of a 1d lattice gas with interacting particles so that the matching probability becomes the grand-partition sum of the lattice gas, with the number of particles corresponding to the number of matches. We perform a virial expansion of the effective equation of state and obtain the probability distribution. Our result reproduces the behavior of the distribution in all regimes. We are also able to show analytically how the limiting distributions arise. Our analysis builds on the fact that the effective interactions between the particles consist of a relatively strong core of size ll, the word length, followed by a weak, exponentially decaying tail. We find that the asymptotic regimes correspond to the case where the tail of the interactions can be neglected, while in the intermediate regime they need to be kept in the analysis. Our results are readily generalized to the case where the random strings are generated by more complicated stochastic processes such as a non-uniform letter probability distribution or Markov chains. We show that in these cases the tails of the effective interactions can be made even more dominant rendering thus the asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The lattice gas analogy has been worked out in full, including virial expansion and equation of state. This constitutes the main part of the paper now. Connections with existing work is made and references should be up to date now. To be submitted for publicatio

    Molecular Mechanism of Capacitative Calcium Entry Deficits in Familial Alzheimer’s Disease

    Get PDF
    Poster PresentationPresenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of amyloid precursor protein to form beta amyloid (Aβ). Mutations in PS associated with familial Alzheimer’s disease (FAD) increase the Aβ plaques formation in the brain and cause neurodegeneration. Apart from this, FAD-linked PS mutations have been demonstrated to disrupt intracellular calcium (Ca2+) regulation. Accumulating evidence suggests that Ca2+ disruption may play a proximal role in the AD pathogenesis. Mutant PS exaggerated Ca2+ release from the endoplasmic reticulum (ER). It also attenuated Ca2+ entry through the capacitative Ca2+ entry (CCE) pathway, yet, the mechanism is not fully understood. Using a human neuroblast cell line SH-SY5Y and Ca2+ imaging technique, we observed CCE deficits in FAD-linked PS1-M146L retroviral infected cell. The attenuation of CCE in PS1 mutant cells was not mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players in the CCE pathway. Instead, we identified a molecular interaction between PS and STIM1 proteins by immunoprecipitation. On the other hand, immunofluorescence staining showed a significant reduction in puncta formation after ER Ca2+ depleted by thapsigargin in cells infected with PS1-M146L as compared to the wild type PS1 infected cells. Taken together, our results suggest a molecular mechanism for the CCE deficits in FAD associated with PS1 mutations. The interaction of mutant PS1 with STIM1 exerts a negative impact on its oligomerization and/or its interaction with Orai1. Our results may suggest molecular targets for the development of therapeutic agents that help to treat the disease.published_or_final_versio

    Cytochrome P450 2C19 Poor Metabolizer Phenotype in Treatment Resistant Depression: Treatment and Diagnostic Implications

    Get PDF
    Background: Pharmacogenomic testing, specifically for pharmacokinetic (PK) and pharmacodynamic (PD) genetic variation, may contribute to a better understanding of baseline genetic differences in patients seeking treatment for depression, which may further impact clinical antidepressant treatment recommendations. This study evaluated PK and PD genetic variation and the clinical use of such testing in treatment seeking patients with bipolar disorder (BP) and major depressive disorder (MDD) and history of multiple drug failures/treatment resistance.Methods: Consecutive depressed patients evaluated at the Mayo Clinic Depression Center over a 10-year study time frame (2003–2013) were included in this retrospective analysis. Diagnoses of BP or MDD were confirmed using a semi-structured diagnostic interview. Clinical rating scales included the Hamilton Rating Scale for Depression (HRSD24), Generalized Anxiety Disorder 7-item scale (GAD-7), Patient Health Questionnaire-9 (PHQ-9), and Adverse Childhood Experiences (ACE) Questionnaire. Clinically selected patients underwent genotyping of cytochrome P450 CYP2D6/CYP2C19 and the serotonin transporter SLC6A4. PK and PD differences and whether clinicians incorporated test results in providing recommendations were compared between the two patient groups.Results: Of the 1795 patients, 167/523 (31.9%) with BP and 446/1272 (35.1%) with MDD were genotyped. Genotyped patients had significantly higher self-report measures of depression and anxiety compared to non-genotyped patients. There were significantly more CYP2C19 poor metabolizer (PM) phenotypes in BP (9.3%) vs. MDD patients (1.7%, p = 0.003); among participants with an S-allele, the rate of CYP2C19 PM phenotype was even higher in the BP (9.8%) vs. MDD (0.6%, p = 0.003). There was a significant difference in the distribution of SLC6A4 genotypes between BP (l/l = 28.1%, s/l = 59.3%, s/s = 12.6%) and MDD (l/l = 31.4%, s/l = 46.1%, s/s = 22.7%) patients (p < 0.01).Conclusion: There may be underlying pharmacogenomic differences in treatment seeking depressed patients that potentially have impact on serum levels of CYP2C19 metabolized antidepressants (i.e., citalopram / escitalopram) contributing to rates of efficacy vs. side effect burden with additional potential risk of antidepressant response vs. induced mania. The evidence for utilizing pharmacogenomics-guided therapy in MDD and BP is still developing with a much needed focus on drug safety, side effect burden, and treatment adherence

    A Quasi-analytical Interpolation Method for Pricing American Options under General Multi-dimensional Diffusion Processes

    Get PDF
    We present a quasi-analytical method for pricing multi-dimensional American options based on interpolating two arbitrage bounds, along the lines of Johnson (1983). Our method allows for the close examination of the interpolation parameter on a rigorous theoretical footing instead of empirical regression. The method can be adapted to general diffusion processes as long as quick and accurate pricing methods exist for the corresponding European and perpetual American options. The American option price is shown to be approximately equal to an interpolation of two European option prices with the interpolation weight proportional to a perpetual American option. In the Black-Scholes model, our method achieves the same e±ciency as Barone-Adesi and Whaley's (1987) quadratic approximation with our method being generally more accurate for out-of-the-money and long-maturity options. When applied to Heston's stochastic volatility model, our method is shown to be extremely e±cient and fairly accurate
    • …
    corecore